小D的abc变换问题-动态规划或者递归

问题描述

小D拿到了一个仅由 "abc" 三种字母组成的字符串。她每次操作会对所有字符同时进行以下变换:

  • 将 'a' 变成 'bc'
  • 将 'b' 变成 'ca'
  • 将 'c' 变成 'ab'

小D将重复该操作 k 次。你的任务是输出经过 k 次变换后,得到的最终字符串。

例如:对于初始字符串 "abc",执行 2 次操作后,字符串将变为 "caababbcbcca"


测试样例

样例1:

输入:s = "abc", k = 2
输出:'caababbcbcca'

样例2:

输入:s = "abca", k = 3
输出:'abbcbccabccacaabcaababbcabbcbcca'

样例3:

输入:s = "cba", k = 1
输出:'abcabc'

 

解题思路

  1. 直接模拟

    • 你可以直接按照题目描述的规则,对字符串进行 k 次变换。每次变换时,遍历字符串中的每个字符,根据规则生成新的字符串。
    • 这种方法简单直接,但可能会因为字符串长度指数级增长而导致效率问题。
  2. 观察规律

    • 观察每次变换后的字符串,看看是否存在某种规律。例如,是否存在周期性,或者是否可以通过某种数学方法简化计算。
    • 如果存在周期性,你可以通过找到周期来减少计算次数。
  3. 递归或动态规划

    • 你可以考虑使用递归或动态规划来解决问题。例如,定义一个函数 transform(s, k),表示对字符串 s 进行 k 次变换后的结果。
    • 递归关系可以表示为 transform(s, k) = transform(transform(s, 1), k-1)

数据结构选择

  • 由于字符串长度可能会变得非常长,选择合适的数据结构来存储和处理字符串是关键。
  • 你可以使用 std::string 来存储字符串,并使用 std::string 的拼接操作来生成新的字符串。

算法步骤

  1. 初始化

    • 从输入字符串 s 开始。
  2. 循环变换

    • 对字符串进行 k 次变换,每次变换时根据规则生成新的字符串。
  3. 返回结果

    • 返回经过 k 次变换后的字符串。

代码实现:

#include <iostream>
#include <string>
using namespace std;

string transform(string s) {
    string result = "";
    for (char c : s) {
        if (c == 'a') {
            result += "bc";
        } else if (c == 'b') {
            result += "ca";
        } else if (c == 'c') {
            result += "ab";
        }
    }
    return result;
}

string solution(string s, int k) {
    // 初始化结果为输入字符串
    string result = s;
    
    // 进行 k 次变换
    for (int i = 0; i < k; ++i) {
        result = transform(result);
    }
    
    return result;
}

int main() {
    cout << (solution("abc", 2) == "caababbcbcca") << endl;
    cout << (solution("abca", 3) == "abbcbccabccacaabcaababbcabbcbcca") << endl;
    cout << (solution("cba", 1) == "abcabc") << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值