有限制的楼梯攀登

问题描述

        小U最近决定挑战一座非常高的楼梯,每次他可以选择走一步或两步,但有一个重要的限制:他不能连续走两步。因此,小U想知道他总共有多少种不同的方式可以从楼梯的底部走到顶端。

        你需要帮他计算在给定的楼梯层数下,小U有多少种走法。


测试样例

样例1:

输入:n = 2
输出:2

样例2:

输入:n = 3
输出:3

样例3:

输入:n = 4
输出:4

C++实现

代码实现

#include <iostream>
#include <vector>

int solution(int n) {
    if (n <= 1) return 1;

    // 定义dp数组,dp[i][0]表示到达第i层楼梯且上一步是走一步的不同走法数
    // dp[i][1]表示到达第i层楼梯且上一步是走两步的不同走法数
    std::vector<std::vector<int>> dp(n + 1, std::vector<int>(2, 0));

    // 初始状态
    dp[0][0] = 1; // 到达第0层且上一步是走一步的走法数
    dp[1][0] = 1; // 到达第1层且上一步是走一步的走法数

    // 状态转移
    for (int i = 2; i <= n; ++i) {
        // 如果上一步是走一步,那么这一步可以走一步或两步
        dp[i][0] = dp[i - 1][0] + dp[i - 1][1];

        // 如果上一步是走两步,那么这一步只能走一步
        dp[i][1] = dp[i - 2][0];
    }

    // 返回到达第n层楼梯的不同走法数
    return dp[n][0] + dp[n][1];
}

int main() {
    std::cout << (solution(2) == 2) << std::endl;
    std::cout << (solution(3) == 3) << std::endl;
    std::cout << (solution(4) == 4) << std::endl;
    return 0;
}

代码解释

  1. 状态定义dp[i][0] 表示到达第 i 层楼梯且上一步是走一步的不同走法数,dp[i][1] 表示到达第 i 层楼梯且上一步是走两步的不同走法数。
  2. 状态转移
    • dp[i][0]:如果上一步是走一步,那么这一步可以走一步或两步,所以 dp[i][0] = dp[i-1][0] + dp[i-1][1]
    • dp[i][1]:如果上一步是走两步,那么这一步只能走一步,所以 dp[i][1] = dp[i-2][0]

Python实现

思路说明

        题目要求计算在给定的楼梯层数下,小U有多少种走法,且不能连续走两步。我们可以通过动态规划来解决这个问题。定义一个二维数组 f,其中 f[i][0] 表示到达第 i 层且最后一步是走一步的走法数,f[i][1] 表示到达第 i 层且最后一步是走两步的走法数。根据题意,f[i][0] 可以由 f[i−1][0] 和 f[i−1][1] 转移而来,而 f[i][1] 只能由 f[i−2][0] 转移而来(因为不能连续走两步)。最终答案是 f[n][0]+f[n][1]。

解题过程

  1. 初始化状态:定义一个二维数组 f,初始状态为 f[0]=[1,0],表示在第0层时,只有一种走法(即不走)。
  2. 状态转移
    • 对于每一层 i,计算 f[i][0] 和 f[i][1]:
      • f[i][0]=f[i−1][0]+f[i−1][1],表示到达第 i 层且最后一步是走一步的走法数。
      • f[i][1]=f[i−2][0],表示到达第 i 层且最后一步是走两步的走法数。
  3. 结果计算:最终答案是 f[n][0]+f[n][1],即到达第 n 层的所有走法数之和。

复杂度分析

  • 时间复杂度:O(n),因为我们只需要遍历一次楼梯层数 n。
  • 空间复杂度:O(n),我们使用了一个二维数组 f 来存储状态。

知识点扩展

  • 动态规划:动态规划是一种通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。在本题中,我们通过定义状态和状态转移方程来求解。
  • 状态转移:状态转移是指从一个状态转移到另一个状态的过程。在本题中,我们通过前一层的状态来计算当前层的状态。
  • 二维数组:二维数组是一种常见的数据结构,用于存储多维状态。在本题中,我们使用二维数组来存储每层的状态。

代码实现

def solution(n: int) -> int:
    f = [[1, 0]]
    for i in range(1, n + 1):
        x = f[i - 1][0] + f[i - 1][1]
        y = f[i - 2][0] if i >= 2 else 0
        f.append([x, y])
    return sum(f[-1])


if __name__ == '__main__':
    print(solution(n = 2) == 2)
    print(solution(n = 3) == 3)
    print(solution(n = 4) == 4)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值