随机森林对缺失值进行补充

本文介绍了如何在Python中使用pandas库导入数据,并利用scikit-learn中的DecisionTreeClassifier进行分类模型构建。通过train_test_split进行数据分割,GridSearchCV进行参数优化,以及cross_val_score评估模型性能。最后,展示了matplotlib.pyplot用于可视化结果。
摘要由CSDN通过智能技术生成

import pandas as pd

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import train_test_split

from sklearn.model_selection import GridSearchCV

from sklearn.model_selection import cross_val_score

import matplotlib.pyplot as plt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值