证明:设矩阵A^2=E,证明A+E与A-E中至少一个不可逆

证明:

因为A^2=E,所以A^2的特征值为1

利用矩阵的性质,A的特征值为\pm1

性质1:矩阵与单位阵和或差的特征值为该矩阵特征值加1或减1

故A+E的特征值为\pm1+1;A-E的特征值为\pm1-1

不管A的特征值为1还是-1,A+E与A-E至少有一个矩阵的特征值为0

性质2:特征值存在0,行列式为0

性质3:行列式为0,矩阵不可逆

由此得证

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值