证明:
因为A^2=E,所以A^2的特征值为1
利用矩阵的性质,A的特征值为1
性质1:矩阵与单位阵和或差的特征值为该矩阵特征值加1或减1
故A+E的特征值为1+1;A-E的特征值为
1-1
不管A的特征值为1还是-1,A+E与A-E至少有一个矩阵的特征值为0
性质2:特征值存在0,行列式为0
性质3:行列式为0,矩阵不可逆
由此得证
证明:
因为A^2=E,所以A^2的特征值为1
利用矩阵的性质,A的特征值为1
性质1:矩阵与单位阵和或差的特征值为该矩阵特征值加1或减1
故A+E的特征值为1+1;A-E的特征值为
1-1
不管A的特征值为1还是-1,A+E与A-E至少有一个矩阵的特征值为0
性质2:特征值存在0,行列式为0
性质3:行列式为0,矩阵不可逆
由此得证