TPAMI 2024 | 解耦图神经网络:同时训练多个简单的GNN而不是一个

Decouple Graph Neural Networks: Train Multiple Simple GNNs Simultaneously Instead of One

解耦图神经网络:同时训练多个简单的GNN而不是一个

Hongyuan Zhang; Yanan Zhu; Xuelong Li


摘要

图神经网络(GNN)由于节点依赖随着层数增加呈指数增长,导致严重的效率问题。这极大地限制了随机优化算法的应用,使得GNN的训练通常耗时较长。为了解决这个问题,我们提出了将多层GNN解耦为多个简单模块以实现更高效的训练,该框架包括经典的前向训练(FT)和设计的反向训练(BT)。在所提出的框架下,每个模块都可以在FT中通过随机算法高效地训练,而不会因简单性而扭曲图信息。为了避免FT中单向信息传递以及充分训练浅层模块与深层模块,我们开发了一种反向训练机制,使前层模块能够感知后层模块,灵感来自经典的反向传播算法。反向训练引入了解耦模块中的反向信息传递以及前向信息传递。为了研究解耦和贪婪训练如何影响表征能力,我们理论上证明了在线性模块中产生的误差在大多数情况下不会在无监督任务中累积。理论和实验结果表明,所提出的框架具有高效性并且性能合理,值得进一步研究。

关键词

  • 反向训练
  • 高效训练
### TPAMI 2024 年关于图像去噪的研究概述 在TPAMI 2024年的研究中,有一篇重要的论文提出了无需去噪的含噪图像表示方法[^1]。这项工作旨在解决具有挑战性的噪声退化问题,并提出了一种新的时频判别图像表示技术。这种方法不仅能够提供信息噪声鲁棒性,还能保持几何不变性,而不需要任何学习过程或显式的去噪操作。 具体而言,这种新方法适用于多种小规模鲁棒视觉问题,尤其是在安全和取证领域中的对抗假设场景下表现出显著潜力。其核心优势在于能够在不依赖传统去噪算法的情况下实现对含噪图像的有效表征,从而简化了处理流程并提高了效率。 此外,在多模态图像修复与融合方面也有相关进展。另一项研究表明,通过设计一种名为DeepMCDL的新颖可解释网络,可以有效应对复杂的图像恢复任务[^2]。尽管此部分重点并非完全集中于单一模式下的去噪问题,但它展示了如何利用深度学习框架结合字典学习机制来提升图像质量,这对于理解更广泛的图像增强策略提供了有价值的见解。 对于特定类型的干扰因素如雨水影响,则存在专门针对此类情况开发的技术方案。例如,“图像去雨Transformer”的研究成果涵盖了多个公开可用的数据集用于验证模型性能,其中包括但不限于Rain200H、Rain200L以及SPAData等[^3]。虽然这些资源主要用于评估去除降雨效果的能力,但从侧面反映了当前学术界对于复杂环境下信号提取的关注程度,这也间接促进了通用型图像去噪理论的发展方向。 综上所述,无论是专注于构建新型无监督式含噪图像表达方式还是探索跨域协作优化路径,都可以看出近年来围绕提高数字媒体抗干扰特性的科研活动正呈现出蓬勃发展的态势。 ```python # 示例代码片段展示可能应用于图像预处理阶段的操作逻辑 import numpy as np def apply_noise_robust_representation(image_array): # 假设此处实现了基于时频分析的方法 transformed_image = np.fft.fftshift(np.fft.fft2(image_array)) return abs(transformed_image) # 调用函数模拟输入输出转换过程 noisy_input = np.random.rand(256, 256) * 255 processed_output = apply_noise_robust_representation(noisy_input) ``` ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值