吉如一线段树:区间最值和历史最值

区间最值和历史最值

问题一

给定一个长度为 n n n 的数组 a a a , 实现以下三种操作 :

0 l r x : 将 a r r [ l ∼ r ] arr[l\sim r] arr[lr] 范围的每个数 v v v , 更新为 min ⁡ ( v , x ) \min (v, x) min(v,x)

1 l r : 查询 max ⁡ i = l r a r r i \max_{i=l}^r arr_i maxi=lrarri

2 l r : 查询 ∑ i = l r a r r i \sum_{i=l}^rarr_i i=lrarri

吉如一线段树。

#include<bits/stdc++.h>
using namespace std;
#define int long long

#define lc u << 1
#define rc u << 1 | 1

int const N = 5e5 + 10;

struct node{
    // mx : 最大值 ; cnt : mx 出现次数
    // se : 第二大
    // sum : 区间和
    int l, r, mx, cnt, se, sum;
}tr[N << 2];

int a[N];

void pushup(int u){
    tr[u].sum = tr[lc].sum + tr[rc].sum;
    tr[u].mx = max(tr[lc].mx, tr[rc].mx);
    if(tr[lc].mx == tr[rc].mx){
        tr[u].cnt = tr[lc].cnt + tr[rc].cnt;
        tr[u].se = max(tr[lc].se, tr[rc].se);
    }
    else if(tr[lc].mx > tr[rc].mx){
        tr[u].cnt = tr[lc].cnt;
        tr[u].se = max(tr[lc].se, tr[rc].mx);
    }
    else{
        tr[u].cnt = tr[rc].cnt;
        tr[u].se = max(tr[lc].mx, tr[rc].se);
    }
}

void pushdown(int u){
    if(tr[lc].mx > tr[u].mx){ // 标记回收
        tr[lc].sum -= (tr[lc].mx - tr[u].mx) * tr[lc].cnt;
        tr[lc].mx = tr[u].mx;
    }
    if(tr[rc].mx > tr[u].mx){ // 标记回收
        tr[rc].sum -= (tr[rc].mx - tr[u].mx) * tr[rc].cnt;
        tr[rc].mx = tr[u].mx;
    }
}

void build(int u, int l, int r){
    tr[u] = {l, r, a[l], 1, LLONG_MIN, a[l]};
    if(l == r) return ;
    int mid = l + r >> 1;
    build(lc, l, mid);
    build(rc, mid + 1, r);
    pushup(u);
}

void setMin(int u, int l, int r, int x){
    if(x >= tr[u].mx) return ;
    if(l <= tr[u].l && r >= tr[u].r && x > tr[u].se){
        tr[u].sum -= (tr[u].mx - x) * tr[u].cnt;
        tr[u].mx = x;
        return ;
    }
    pushdown(u);
    int mid = tr[u].l + tr[u].r >> 1;
    if(l <= mid) setMin(lc, l, r, x);
    if(r > mid) setMin(rc, l, r, x);
    pushup(u);
}

int askMax(int u, int l, int r){
    if(l <= tr[u].l && r >= tr[u].r){
        return tr[u].mx;
    }
    int mid = tr[u].l + tr[u].r >> 1;
    pushdown(u);
    int res = LLONG_MIN;
    if(l <= mid) res = max(res, askMax(lc, l, r));
    if(r > mid) res = max(res, askMax(rc, l, r));
    return res;
}

int askSum(int u, int l, int r){
    if(l <= tr[u].l && r >= tr[u].r){
        return tr[u].sum;
    }
    int mid = tr[u].l + tr[u].r >> 1;
    pushdown(u);
    int sum = 0;
    if(l <= mid) sum += askSum(lc, l, r);
    if(r > mid) sum += askSum(rc, l, r);
    return sum;
}

void solve(){
    int n, q;
    cin >> n >> q;
    for(int i = 1; i <= n; i ++){
        cin >> a[i];
    }
    build(1, 1, n);

    while(q --){
        int op, l, r, t;
        cin >> op >> l >> r;
        if(op == 0){
            cin >> t;
            setMin(1, l, r, t);
        }
        else if(op == 1){
            cout << askMax(1, l, r) << '\n';
        }
        else{
            cout << askSum(1, l, r) << '\n';
        }
    }
}

signed main(){
    ios::sync_with_stdio(false);
    cin.tie(0), cout.tie(0); 

    int T;
    cin >> T;
    while(T --){
        solve();
    }
    return 0;
}

问题二

题目背景

本题是线段树维护区间最值操作与区间历史最值的模板。

题目描述

给出一个长度为 n n n 的数列 A A A,同时定义一个辅助数组 B B B B B B 开始与 A A A 完全相同。接下来进行了 m m m 次操作,操作有五种类型,按以下格式给出:

  • 1 l r k:对于所有的 i ∈ [ l , r ] i\in[l,r] i[l,r],将 A i A_i Ai 加上 k k k k k k 可以为负数)。
  • 2 l r v:对于所有的 i ∈ [ l , r ] i\in[l,r] i[l,r],将 A i A_i Ai 变成 min ⁡ ( A i , v ) \min(A_i,v) min(Ai,v)
  • 3 l r:求 ∑ i = l r A i \sum_{i=l}^{r}A_i i=lrAi
  • 4 l r:对于所有的 i ∈ [ l , r ] i\in[l,r] i[l,r],求 A i A_i Ai 的最大值。
  • 5 l r:对于所有的 i ∈ [ l , r ] i\in[l,r] i[l,r],求 B i B_i Bi 的最大值。

在每一次操作后,我们都进行一次更新,让 B i ← max ⁡ ( B i , A i ) B_i\gets\max(B_i,A_i) Bimax(Bi,Ai)

输入格式

第一行包含两个正整数 n , m n,m n,m,分别表示数列 A A A 的长度和操作次数。

第二行包含 n n n 个整数 A 1 , A 2 , ⋯   , A n A_1,A_2,\cdots,A_n A1,A2,,An,表示数列 A A A

接下来 m m m 行,每行行首有一个整数 o p op op,表示操作类型;接下来两个或三个整数表示操作参数,格式见【题目描述】。

输出格式

对于 o p ∈ { 3 , 4 , 5 } op\in\{3,4,5\} op{3,4,5} 的操作,输出一行包含一个整数,表示这个询问的答案。

样例 #1

样例输入 #1

5 6
1 2 3 4 5
3 2 5
1 1 3 3
4 2 4
2 3 4 1
5 1 5
3 1 4

样例输出 #1

14
6
6
11

提示

样例说明 #1
操作次数输入内容操作数列输出结果
0 1 , 2 , 3 , 4 , 5 1,2,3,4,5 1,2,3,4,5
13 2 5求出 [ 2 , 5 ] [2,5] [2,5] 所有数的和 1 , 2 , 3 , 4 , 5 1,2,3,4,5 1,2,3,4,514
21 1 3 3 [ 1 , 3 ] [1,3] [1,3] 内所有数加 3 3 3 4 , 5 , 6 , 4 , 5 4,5,6,4,5 4,5,6,4,5
34 2 4求出 [ 2 , 4 ] [2,4] [2,4] 所有数的最大值 4 , 5 , 6 , 4 , 5 4,5,6,4,5 4,5,6,4,56
42 3 4 1 [ 3 , 4 ] [3,4] [3,4] 所有数与 1 1 1 取最小值 4 , 5 , 1 , 1 , 5 4,5,1,1,5 4,5,1,1,5
55 1 5求出 [ 1 , 5 ] [1,5] [1,5] 所有位置历史最大值的最大值 4 , 5 , 1 , 1 , 5 4,5,1,1,5 4,5,1,1,56
63 1 4求出 [ 1 , 4 ] [1,4] [1,4] 所有数的和 4 , 5 , 1 , 1 , 5 4,5,1,1,5 4,5,1,1,511
数据规模与约定
  • 对于测试点 1 , 2 1,2 1,2,满足 n , m ≤ 5000 n,m\leq 5000 n,m5000
  • 对于测试点 3 , 4 3,4 3,4,满足 o p ∈ { 1 , 2 , 3 , 4 } op\in\{1,2,3,4\} op{1,2,3,4}
  • 对于测试点 5 , 6 5,6 5,6,满足 o p ∈ { 1 , 3 , 4 , 5 } op\in\{1,3,4,5\} op{1,3,4,5}
  • 对于全部测试数据,保证 1 ≤ n , m ≤ 5 × 1 0 5 1\leq n,m\leq 5\times 10^5 1n,m5×105 − 5 × 1 0 8 ≤ A i ≤ 5 × 1 0 8 -5\times10^8\leq A_i\leq 5\times10^8 5×108Ai5×108 o p ∈ [ 1 , 5 ] op\in[1,5] op[1,5] 1 ≤ l ≤ r ≤ n 1 \leq l\leq r \leq n 1lrn − 2000 ≤ k ≤ 2000 -2000\leq k\leq 2000 2000k2000 − 5 × 1 0 8 ≤ v ≤ 5 × 1 0 8 -5\times10^8\leq v\leq 5\times10^8 5×108v5×108
提示

本题输入量较大,请使用合理高效的读入方法。

#include<bits/stdc++.h>
using namespace std;
#define int long long

#define lc u << 1
#define rc u << 1 | 1

int const N = 5e5 + 10;

struct node{
	// mx : 最大值 ; cnt : mx 出现次数
	// se : 第二大
	// sum : 区间和
	// mxhis : 历史最大值
	// add1, add2 : 区间最大值/非最大的懒标记
	// add3, add4 : 最大值懒标记历史最大值, 非最大值懒标记最历史大值
	int l, r, mx, cnt, se, sum, mxhis;
	int add1, add2, add3, add4;
}tr[N << 2];

int a[N];

void pushup(int u){
	tr[u].sum = tr[lc].sum + tr[rc].sum;
	tr[u].mx = max(tr[lc].mx, tr[rc].mx);
	tr[u].mxhis = max(tr[lc].mxhis, tr[rc].mxhis);
	if(tr[lc].mx == tr[rc].mx){
		tr[u].cnt = tr[lc].cnt + tr[rc].cnt;
		tr[u].se = max(tr[lc].se, tr[rc].se);
	}
	else if(tr[lc].mx > tr[rc].mx){
		tr[u].cnt = tr[lc].cnt;
		tr[u].se = max(tr[lc].se, tr[rc].mx);
	}
	else{
		tr[u].cnt = tr[rc].cnt;
		tr[u].se = max(tr[lc].mx, tr[rc].se);
	}
}

void down(int u, int add1, int add2, int add3, int add4){
	tr[u].sum += add1 * tr[u].cnt + add2 * (tr[u].r - tr[u].l + 1 - tr[u].cnt);
	tr[u].mxhis = max(tr[u].mxhis, tr[u].mx + add3);
	tr[u].mx += add1;
	if(tr[u].se != LLONG_MIN) tr[u].se += add2;
	tr[u].add3 = max(tr[u].add3, tr[u].add1 + add3);
	tr[u].add4 = max(tr[u].add4, tr[u].add2 + add4);
	tr[u].add1 += add1;
	tr[u].add2 += add2;
}

void pushdown(int u){
	int maxn = max(tr[lc].mx, tr[rc].mx);
	if(tr[lc].mx == maxn){
		down(lc, tr[u].add1, tr[u].add2, tr[u].add3, tr[u].add4);
	}
	else{
		down(lc, tr[u].add2, tr[u].add2, tr[u].add4, tr[u].add4);
	}
	if(tr[rc].mx == maxn){
		down(rc, tr[u].add1, tr[u].add2, tr[u].add3, tr[u].add4);
	}
	else{
		down(rc, tr[u].add2, tr[u].add2, tr[u].add4, tr[u].add4);
	}
	tr[u].add1 = tr[u].add2 = tr[u].add3 = tr[u].add4 = 0;
}

void build(int u, int l, int r){
	tr[u] = {l, r, a[l], 1, LLONG_MIN, a[l], a[l], 0, 0, 0, 0};
	if(l == r) return ;
	int mid = l + r >> 1;
	build(lc, l, mid);
	build(rc, mid + 1, r);
	pushup(u);
}

void segAdd(int u, int l, int r, int x){
	if(l <= tr[u].l && r >= tr[u].r){
		tr[u].sum += x * (tr[u].r - tr[u].l + 1);
		tr[u].mx += x;
		tr[u].mxhis = max(tr[u].mx, tr[u].mxhis);
		if(tr[u].se != LLONG_MIN) tr[u].se += x;
		tr[u].add1 += x, tr[u].add2 += x;
		tr[u].add3 = max(tr[u].add3, tr[u].add1);
		tr[u].add4 = max(tr[u].add4, tr[u].add2);
		return ;
	}
	int mid = tr[u].l + tr[u].r >> 1;
	pushdown(u);
	if(l <= mid) segAdd(lc, l, r, x);
	if(r > mid) segAdd(rc, l, r, x);
	pushup(u);
}

void setMin(int u, int l, int r, int x){
	if(x >= tr[u].mx) return ;
	if(l <= tr[u].l && r >= tr[u].r && x > tr[u].se){
		int t = tr[u].mx - x;
		tr[u].sum -= t * tr[u].cnt;
		tr[u].mx = x;
		tr[u].add1 -= t;
		return ;
	}
	pushdown(u);
	int mid = tr[u].l + tr[u].r >> 1;
	if(l <= mid) setMin(lc, l, r, x);
	if(r > mid) setMin(rc, l, r, x);
	pushup(u);
}

int askMax(int u, int l, int r){
	if(l <= tr[u].l && r >= tr[u].r){
		return tr[u].mx;
	}
	int mid = tr[u].l + tr[u].r >> 1;
	pushdown(u);
	int res = LLONG_MIN;
	if(l <= mid) res = max(res, askMax(lc, l, r));
	if(r > mid) res = max(res, askMax(rc, l, r));
	return res;
}

int askMaxHis(int u, int l, int r){
	if(l <= tr[u].l && r >= tr[u].r){
		return tr[u].mxhis;
	}
	int mid = tr[u].l + tr[u].r >> 1;
	pushdown(u);
	int res = LLONG_MIN;
	if(l <= mid) res = max(res, askMaxHis(lc, l, r));
	if(r > mid) res = max(res, askMaxHis(rc, l, r));
	return res;
}

int askSum(int u, int l, int r){
	if(l <= tr[u].l && r >= tr[u].r){
		return tr[u].sum;
	}
	int mid = tr[u].l + tr[u].r >> 1;
	pushdown(u);
	int sum = 0;
	if(l <= mid) sum += askSum(lc, l, r);
	if(r > mid) sum += askSum(rc, l, r);
	return sum;
}

void solve(){
	int n, q;
	cin >> n >> q;
	for(int i = 1; i <= n; i ++){
		cin >> a[i];
    }
    build(1, 1, n);

    while(q --){
    	int op, l, r, t;
    	cin >> op >> l >> r;
    	if(op == 1){
    		cin >> t;
    		segAdd(1, l, r, t);
    	}
    	else if(op == 2){
    		cin >> t;
    		setMin(1, l, r, t);
    	}
    	else if(op == 3){
    		cout << askSum(1, l, r) << '\n';
    	}
    	else if(op == 4){
    		cout << askMax(1, l, r) << '\n';
    	}
    	else{
    		cout << askMaxHis(1, l, r) << '\n';
    	}
    }
}

signed main(){
	ios::sync_with_stdio(false);
	cin.tie(0), cout.tie(0); 

	int T = 1;
	while(T --){
		solve();
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值