- 博客(143)
- 收藏
- 关注
原创 softmax+cross entropy
交叉熵衡量的是两个概率分布之间的差异,在分类任务里,通常是模型预测的概率分布与真实标签的分布之间的差异。
2025-06-01 13:56:23
722
原创 Backbone
在计算机视觉中,是深度学习模型的特征提取器,通常是用于从输入图像中提取高级语义特征的卷积神经网络部分,后续模块(如检测头、分割头等)就是基于这些特征进行推理。
2025-05-21 15:03:50
949
原创 Codeforces Round 1022 (Div. 2) A ~ C
为了让它们的异或等于 0(否则会把最终整体异或从。是奇数,就再多放一个 “1” ——这样放了。我们需要求出对于所有长度为。的值都可以构造得到,所以。个 1,异或为 0,总和。一言以蔽之,可以统一写作。然后从大到小处理所有按钮。个元素都填 “1”。个 1 异或的结果是。将数值相同的点先合并。
2025-05-02 21:37:47
1315
原创 L3-041 影响力
下面给出基于“切比雪夫距离”(Chebyshev 距离)之和的高效 O(nm) 解法。这样即可在 400 ms、256 MB 内完成所有位置的影响力代价计算。输出 strength[i][j] × xpmclzjkln。下面给出完整 C++ 代码示例(变量名中间值即用。
2025-05-01 22:28:46
586
原创 L3-040 人生就像一场旅行
给定一张旅游地图和银行卡的消费额度,从任一座城市出发,去任一座城市都走最便宜的路线,能够到达哪些地方?如果再给每条道路加一个“途径风景心情指数”,当有多个可达目的地时,选沿途心情指数总值最高的,则可以到达哪些地方?对于每个需要咨询的出发城市编号,输出 2 行信息:第一行按升序输出消费额度内从该城市出发能到达的城市编号;“人生就像一场旅行,不在乎目的地,在乎的是沿途的风景以及看风景的心情。最后一行给出 k 个城市的编号,为需要咨询的出发城市的编号。为道路两端城市的编号,城市从 1 到 n 编号;
2025-05-01 21:46:10
337
原创 2025年天梯题解(L1-8 + L2)
先将输入的全括号算式解析成一棵二叉树,然后做后序遍历——即先处理左子树、再处理右子树、最后输出当前节点的操作。输出时,如果左右子节点是叶子数字,就打印该数字;这样完全符合题目要“只输出数字+操作符”的格式要求。排序之后, 记录行列被轰炸的编号,进行 k 次挑选即可。既然是从大到小轰炸,将所有点存储为三元组。
2025-04-30 22:58:13
967
原创 线性微分方程与非线性微分方程
的,因此不能通过常规线性微分方程方法求得解析解。这个是一个二阶常微分方程,并且由于右侧是。这个积分通常不能用初等函数表示,它涉及。积分)将其化为一阶微分方程。,可以直接分离变量求解。,所以解析解一般只能写成。
2025-04-30 21:57:18
818
原创 残差(Residual)
在传统的神经网络中,每一层的输出是基于输入的某种非线性变换。yFxxyFxxxxx是当前层的输入,FxF(x)Fx是当前层的变换(通常是卷积层或全连接层的输出),yyy是当前层的输出。在这个公式中,残差就是FxF(x)Fx,即网络学习的部分,而xxx是输入。这种连接方式允许信息直接从上一层传递到下一层,而不会经过复杂的变换,从而帮助网络更容易训练。
2025-04-22 16:59:09
638
原创 Codeforces Round 984 (Div. 3) E ~ G
那么直接二分询问,区间最多分裂两次。每个区间都是 $\log $。, 那么 b, c 高位是 1,a 不是,每次问。, 最后分裂出两个区间。有规律,先求 1 到 r,然后容斥掉。这部分可以解不等式得到。因为 x|y > x,按列二分。先问 [1,n], 如果。
2024-11-04 15:42:39
529
原创 线段树查询区间回文+区间字母右移
对于下传,其实本质就是交换哈希值,开两个临时数组备份一下。属于一道很有意思的线段树,线段树维护以下信息。剩下就是上传和下传操作了,对于上传,想要拼接。维护对应字母在当前线段自己位置的哈希值。个字母的哈希值,以及区间移动懒标记。,表示一个区间的正哈希值,例如。只需要维护正反两种哈希即可。维护线段左右端点,线段长度,,然后移动一下哈希值即可。就是一条线段的哈希值。,显然右边应该再乘上。
2024-09-29 22:03:10
1344
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人