线性微分方程与非线性微分方程

方程一

d x d t = x \frac{dx}{dt} = x dtdx=x

这是一个一阶线性常微分方程,可以直接分离变量求解。

将变量分离:

d x x = d t \frac{dx}{x} = dt xdx=dt

两边积分:

∫ 1 x   d x = ∫ 1   d t ⇒ ln ⁡ ∣ x ∣ = t + C \int \frac{1}{x} \, dx = \int 1 \, dt \Rightarrow \ln |x| = t + C x1dx=1dtlnx=t+C

两边取指数:

∣ x ∣ = e t + C = e C ⋅ e t |x| = e^{t + C} = e^C \cdot e^t x=et+C=eCet
A = ± e C A = \pm e^C A=±eC,即为常数,得通解:

x ( t ) = A e t x(t) = A e^t x(t)=Aet

方程二

d 2 x d t 2 = cos ⁡ x \frac{d^2x}{dt^2} = \cos x dt2d2x=cosx

这个是一个二阶常微分方程,并且由于右侧是 cos ⁡ x \cos x cosx,它是非线性的,因此不能通过常规线性微分方程方法求得解析解。但我们可以采用能量守恒法(乘上 d x d t \frac{dx}{dt} dtdx 积分)将其化为一阶微分方程。

步骤一:将其降阶

设:

v = d x d t ⇒ d 2 x d t 2 = d v d t = d v d x ⋅ d x d t = v ⋅ d v d x v = \frac{dx}{dt} \Rightarrow \frac{d^2x}{dt^2} = \frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt} = v \cdot \frac{dv}{dx} v=dtdxdt2d2x=dtdv=dxdvdtdx=vdxdv

代入原方程:

v ⋅ d v d x = cos ⁡ x v \cdot \frac{dv}{dx} = \cos x vdxdv=cosx

两边同时积分:

∫ v   d v = ∫ cos ⁡ x   d x ⇒ v 2 2 = sin ⁡ x + C \int v \, dv = \int \cos x \, dx \Rightarrow \frac{v^2}{2} = \sin x + C vdv=cosxdx2v2=sinx+C

即:

( d x d t ) 2 = 2 sin ⁡ x + C 1 ⇒ d x d t = ± 2 sin ⁡ x + C 1 \left(\frac{dx}{dt}\right)^2 = 2 \sin x + C_1 \Rightarrow \frac{dx}{dt} = \pm \sqrt{2\sin x + C_1} (dtdx)2=2sinx+C1dtdx=±2sinx+C1

步骤二:形式上积分得到 t

此时我们得到了:

d x 2 sin ⁡ x + C 1 = ± d t \frac{dx}{\sqrt{2 \sin x + C_1}} = \pm dt 2sinx+C1 dx=±dt

积分两边:

∫ d x 2 sin ⁡ x + C 1 = ± t + C 2 \int \frac{dx}{\sqrt{2 \sin x + C_1}} = \pm t + C_2 2sinx+C1 dx=±t+C2

这个积分通常不能用初等函数表示,它涉及椭圆积分,所以解析解一般只能写成隐式表达式

t = ∫ d x 2 sin ⁡ x + C 1 + C t = \int \frac{dx}{\sqrt{2 \sin x + C_1}} + C t=2sinx+C1 dx+C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值