【每日一题】三数之和

本文介绍了三数之和问题的两种解法,包括暴力枚举和双指针优化。暴力解法因效率低而被舍弃,双指针方法通过先排序并利用单调性,结合去重技巧,有效地降低了时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

三数之和,点击左侧即可跳转。

题目详情:

在这里插入图片描述

思路:

暴力:

我们会显而易见的想到使用暴力解法,3个for循环暴力枚举再进行check即可,大思路很简单就可以想到

但是这题的细节很多,我们注意到题明确说明不能有重复的三元组,这对于平时做题时可以直接使用set容器去重,但是前提是我们要有序,那么我们就要再先排序再进行for循环的3个嵌套。

但是暴力循环是效率很低的,我们便不再实现这种代码。


双指针:

我们在遇到有单调性的数组时要及时的想到双指针这种优秀的算法,一般可以直接将时间复杂度降一维。

那么该如何使用双指针呢?


我们可以先思考一下如何求两数之和
在这里插入图片描述
这题可以使用双指针就可以很高效的解答。
即规定两个下标


知道两数之和的解法那么三数之和也就自然而然的想到了

  1. 将数组排序
  2. 从左到右依次固定住一个元素
  3. 在其右侧区间进行查找
    在这里插入图片描述

注意:

  • 但是这题使用set容器去重是很方便的,
    但如果面试的时候肯定要手搓一个去重
  • 另外由于我们两数之和是返回一对正确答案即可停止,但是这题我们找到一对后要继续,防止遗漏。、在这里插入图片描述

代码实现:

class Solution {
public:
    vector<vector<int>> threeSum(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        vector<vector<int>> vv;

        for (int i = 0; i < nums.size() - 2; i++)
        {
        	//去重i
            if(nums[i] > 0) break;
            while (i > 0 && i < nums.size() - 2 && nums[i] == nums[i - 1])
                i++;

            int left = i + 1, right = nums.size() - 1;
            while (left < right)
            {
                if ((-nums[i]) == (nums[left] + nums[right]))
                {
                    vector<int> v;
                    v.push_back(nums[i]);
                    v.push_back(nums[left]);
                    v.push_back(nums[right]);
                    vv.push_back(v);
                    //防漏
                    left++;
                    while (left < right && nums[left] == nums[left - 1])
                        left++;
                    //防漏
                    right--;
                    while (left < right && nums[right] == nums[right + 1])
                        right--;
                }
                else if ((-nums[i]) < (nums[left] + nums[right]))
                {
                	//去重
                    right--;
                    while (left < right && nums[right] == nums[right + 1])
                        right--;
                }
                else
                {
                	//去重
                    left++;
                    while (left < right && nums[left] == nums[left - 1])
                        left++;
                }
            }
        }
        return vv;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值