【数据结构】插入排序

本文详细介绍了直接插入排序及其改进版本希尔排序,包括基本思想、代码实现以及它们的时间复杂度、空间复杂度和稳定性。重点强调了希尔排序是通过预排序优化直接插入排序,尤其在元素接近有序时效率更高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

排序是数据结构中较为难啃的一块
常见的排序有插入排序,选择排序,交换排序和归并排序四种
今天来讲插入排序,插入排序分为直接插入排序与希尔排序,两者具有紧密的递进性,故博主会按照先直接插入在希尔的顺序进行讲解

直接插入排序:

23年-12月06日--排序/动图/插入排序.gif

直接插入排序是一种简单的插入排序法,其基本思想是:
把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列 。

实际中我们玩扑克牌时,就用了插入排序的思想在这里插入图片描述
我们在实现排序算法时,可以先实现一个元素的插入,最后在完善成一个完整的插入排序,这样实现有助于我们控制,理解也会更方便一点

我们先来看一个元素的插入:
假设我们有一个已经排好序的数组(升序)
下标为[0, end],现在我们将下标为end + 1的元素插入

	//[0, end] end + 1
	int val = a[end + 1];
	while (end >= 0)
	{
		if (a[end] > val)
		{
			a[end + 1] = a[end];
			end--;
		}
		else
		{
			break;
		}
	}
	a[end + 1] = val;

这就是一个元素的插入,那我们如何完善成一个标准的排序呢,
加一个循环,循环变量为end,进行对end的控制


直接插入排序完整代码:

void testinsert(int* a, int n)
{
	for (int i = 0; i < n - 1; i++)
	{
	    //[0, end] end + 1
		int end = i;
		int tmp = a[end + 1];
		while (end >= 0)
		{
			if (a[end] > tmp)
			{
				a[end + 1] = a[end];
				end--;
			}
			else
			{
				break;
			}
		}
		a[end + 1] = tmp;
	}
}

直接插入排序的特性总结:

  1. 元素集合越接近有序,直接插入排序算法的时间效率越高
  2. 时间复杂度:O(N^2)
  3. 空间复杂度:O(1),它是一种稳定的排序算法
  4. 稳定性:稳定

希尔排序:

希尔排序总是能给你意想不到的惊喜,他是基于插入排序而存在。

希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成个组,所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后,取,重复上述分组和排序的工作。当到达=1时,所有记录在统一组内排好序

这一段话理解起来比较抽象,我们等下会有图形演示

话说在以前,有个大佬觉得直接插入排序效率(几乎不有序)比较低,于是进行改进,让一个数组先进行预排序
什么叫预排序呢,
就是先对一个数组进行粗略的排序,然后最后执行直接插入排序(因为元素集合越接近有序,直接插入排序算法的时间效率越高),会使时间复杂度大大的降低

假设我们有个数组,gap为预排序的间隔每个颜色相同的为一组,我们分别对每一组进行直接插入排序,因为元素个数实在太少,所以效率很高
在这里插入图片描述
那我们根据直接插入排序就可以得到预排序的代码
在这里插入图片描述
通过改进可以变为多组并排:
在这里插入图片描述
最后再执行一次直接插入就可以得到希尔排序与一个有序数组
但是仍然可以改进,因为这样写太过于繁琐
改进代码如下

希尔排序完整代码:

void ShellSort(int* a, int n)
{
	int gap = n ;
	while (gap > 1)
	{
		gap = gap / 3 + 1;
		for (int i = 0; i < n - gap; i++)
		{
			int end = i;
			int tmp = a[end + gap];
			while (end >= 0)
			{
				if (tmp < a[end])
				{
					a[end + gap] = a[end];
					end -= gap;
				}
				else
				{
					break;
				}
			}
			a[end + gap] = tmp;
		}
	}
}

希尔排序的特性总结:

  1. 希尔排序是对直接插入排序的优化。

  2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。

  3. 时间复杂度:在这里插入图片描述

  4. 稳定性:不稳定

欢迎讨论

插入排序算法数据结构中的一种排序算法,它将待排序的元素分为已排序和未排序两部分,每次从未排序部分取出一个元素,将其插入到已排序部分的合适位置。插入排序算法有多种实现方式,其中最常见的有直接插入排序、折半插入排序和希尔排序。 直接插入排序算法的基本思想是将待排序元素逐个插入到已经排序好的序列中,从而得到一个新的有序序列。具体实现过程如下: 1. 将第一个元素视为已排序序列,剩余的元素视为未排序序列。 2. 从未排序序列中取出一个元素,将其与已排序序列中的元素从后往前依次比较,找到合适的位置插入。 3. 重复步骤2,直到未排序序列中的所有元素都插入到已排序序列中。 折半插入排序算法是对直接插入排序算法的改进,通过使用二分查找的方式确定插入位置,减少了比较次数。具体实现过程如下: 1. 将第一个元素视为已排序序列,剩余的元素视为未排序序列。 2. 从未排序序列中取出一个元素,使用二分查找的方法找到合适的插入位置。 3. 将元素插入到找到的位置,并将位置后的元素依次后移。 4. 重复步骤2和3,直到未排序序列中的所有元素都插入到已排序序列中。 希尔排序算法是对插入排序算法的另一种改进,通过对待排序序列进行分组,先进行局部排序,然后逐渐减少分组的长度,最终进行一次完整插入排序。具体实现过程如下: 1. 选择一个增量序列,按照增量序列对待排序序列进行分组。 2. 对每个分组进行插入排序。 3. 不断缩小增量,重复步骤2,直到增量为1。 4. 进行一次完整插入排序。 这些是插入排序算法的基本思想和实现方法,它们都可以对一组数据进行排序。具体选择哪种算法取决于实际的需求和数据规模。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值