开源LocalAI本地人工智能安装教程

LocalAI是一款无需GPU和网络的本地人工智能应用,兼容OpenAI API。本文提供详细的安装教程,包括下载源码、解压、docker构建镜像和运行。LocalAI支持多种模型,如音频转录、文本生成和图像创建。通过C++绑定提升性能,其易扩展性使其成为开源ChatGPT的潜在替代品。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LocalAI是一款能在本地运行的人工智能应用,它兼容了OpenAI API规范,它可以在普通的电脑运行,不需要GPU,也不需要联网,音频转录、使用 GPT 生成文本、使用稳定扩散生成图像(实验),支持与ggml格式兼容的多个模型系列llama、gpt4all、rwkv、whisper、vicuna、koala、gpt4all-j、cerebras、falcon、dolly、starcoder 等,一句话总结:本地运行,无需联网,只要有模型, 我们就可以轻松运行使用。

功能

1.本地的 OpenAI 嵌入式替代 REST API。你拥有你的数据。
2.无需 GPU。也不需要互联网访问。可选,GPU 加速在兼容的 LLM 中可用llama.cpp。
3.支持多种模型、音频转录、使用 GPT 生成文本、使用稳定扩散生成图像(实验)
4.第一次加载后,它会将模型加载到内存中以进行更快的推理
5.不掏空,但使用 C++ 绑定来实现更快的推理和更好的性能。

好了,按照惯例,我们直接上本地安装教程

安装教程

安装前需要在你的电脑中安装docker,不懂安装的话可以看下之前的文章

1.下载源码包
## 下载源码
https://github.com/go-skynet/LocalAI/archive/refs/heads/master.zip
2.解压后,
<think>好的,我现在需要帮助用户寻找可以本地部署的开源AI智能体项目。首先,我要理解用户的需求。用户明确提到“开源AI智能体”和“本地部署”,所以需要找到符合这两个条件的项目。 接下来,我应该回顾之前提供的引用内容。根据引用[1],阿里开源的AgentScope支持本地模型部署,这可能是一个候选项目。引用[2]提到Ollama和FastGPT用于搭建本地私有AI大模型智能体,这两个工具结合起来可能符合用户需求。引用[3]则涉及Dify和Weaviate向量数据库的部署,Dify可能也是一个选项。 然后,我需要验证这些项目是否确实支持本地部署并且是开源的。AgentScope在引用[1]中提到支持本地模型部署,并且是阿里开源的,应该符合条件。Ollama和FastGPT在引用[2]中被描述为本地部署工具,Ollama专为本地运行大模型设计,FastGPT是开源的RAG框架,所以这两个也是合适的。Dify在引用[3]中提到的部署方式包括本地安装,并且项目是开源的,所以Dify和Verba(基于Weaviate的RAG项目)都可以考虑。 接下来,我需要整理这些信息,确保每个项目都有清晰的描述,包括功能、技术栈和本地部署的优势。同时,需要按照用户的要求,将独立公式用$$...$$格式,但这里可能涉及较少数学内容,主要关注项目介绍。 然后,生成相关问题。根据用户之前的示例,问题应围绕部署、比较、工具选择、结合方式、学习资源等展开。 最后,检查回答是否符合格式要求:使用中文,行内数学表达式正确,引用标识正确添加,代码块格式正确,结构清晰。确保没有使用Markdown格式,代码块用三个反引号包围,引用标识自然添加在段落末尾。</think>以下是一些支持本地部署的开源AI智能体项目推荐,结合引用内容和技术特点进行说明: ### 1. **AgentScope(阿里开源)** 支持本地模型部署的低代码多智能体开发框架,提供完整工具链。支持一键导出源码,可对接Hugging Face/ModelScope模型库,适合快速构建AI应用[^1]。 ```bash # 部署示例 pip install agentscope ``` ### 2. **Ollama + FastGPT工作流** - **Ollama**:专为本地运行大模型设计的工具,支持Llama 2/Mistral等模型量化版本 - **FastGPT**:开源RAG框架,支持知识库构建与本地化部署[^2] ```bash # Ollama安装 curl -fsSL https://ollama.com/install.sh | sh ``` ### 3. **Dify + Weaviate** - **Dify**:可视化LLM应用开发平台,支持私有化部署 - **Verba**:基于Weaviate向量数据库的RAG项目,提供本地知识库解决方案[^3] ```bash git clone https://github.com/weaviate/Verba pip install -e . ``` ### 4. **LocalAI** 开源替代方案,兼容OpenAI API,支持在本地CPU/GPU运行LLM,提供REST API接口。 $$ \text{部署成本} = f(\text{硬件资源}, \text{模型量化级别}) $$
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值