- 博客(511)
- 收藏
- 关注
原创 Dify 实战教程 | 10分钟搭建你的 Chatflow(数据可视化助手)
本篇我们来聊聊如何使用 Dify 的 Chatflow(对话流程编排器),构建一个Excel 数据可视化助手。在此前的教程中,我们介绍了「聊天助手」和「Agent」构建助手的使用方式,本篇将介绍一种更可控、逻辑更清晰的构建方式——Chatflow 应用。
2025-06-04 16:22:34
746
原创 Dify 实战教程 | 10分钟搭建你的聊天助手(旅游顾问)
步骤内容第一步新建应用,选择聊天助手第二步填写应用基础信息第三步设计提示词第四步配置用户输入字段(可选)第五步测试并发布零代码搭建专属聊天助手,就是这么简单!大模型作为新时代的风口,确实为那些希望转行或寻求职业突破的人提供了广阔的舞台。然而,是否选择进入这一领域还需综合考虑自身的兴趣、特长以及长远规划。通过构建基础知识体系、参与实际项目、拓展软技能、关注跨学科融合以及建立广泛的社交网络,你可以在这个充满机遇的新领域中迅速站稳脚跟。
2025-06-04 16:20:53
645
原创 大模型好书推荐 - 《多模态大模型:技术原理和实战》(附送PDF电子版)
《多模态大模型:技术原理与实战》 是一本深度解析大语言模型与多模态大模型的权威著作。该书系统回顾了大语言模型和多模态大模型的发展历史,详尽阐述了它们的技术原理、核心亮点以及主要特性。书中不仅介绍了众多关键的开源框架和配套工具,还详细讲解了模型的部署细则,同时特别精选了三个使用大模型为商业赋能的应用案例, 为读者提供了从理论到实践的全面指导。
2025-06-03 17:12:38
1433
原创 一文搞懂大模型的预训练(Pre-training)
今天来聊一聊BERT和GPT的预训练,从而了解大模型的第四步:Pre-training。预训练(Pre-training)是大语言模型(如BERT、GPT)训练的第一阶段,其核心目标是通过自监督学习从海量无标注文本中学习通用的语言表示(Language Representation)。这一阶段的目标是让模型掌握语言的语法、语义、常识等基础能力,为后续的微调(Fine-tuning)打下基础。
2025-06-03 17:11:00
891
原创 本地部署大模型实现扫描版PDF文件OCR 识别,笔记本可跑
在使用大模型处理书籍 PDF 时,有时你会遇到扫描版 PDF,也就是说每一页其实是图像形式。这时,大模型需要先从图片中提取文本,而这就需要借助 OCR(光学字符识别)技术。``像 Gemini 2.5 这样的强大模型,具备非常强的从图片中提取文本的能力。实际上,我们完全可以利用它来执行 OCR 任务。
2025-06-03 16:45:07
534
原创 大模型入门,从入门到精通,收藏这一篇就够了,2025年最新版:最全合集,不容错过!
大模型(Large Models)的训练是近年来人工智能领域的核心技术之一,尤其是在自然语言处理、计算机视觉等任务中,如 GPT、BERT 等模型的成功背后,离不开复杂的训练过程。本文将为你介绍大模型是如何训练的,包括数据准备、模型架构、训练方法和硬件支持等方面。
2025-05-30 22:22:21
906
原创 大模型书籍 | 从入门到精通大模型就看一这一本《掌握Transformer:从零开始构建SOTA模型》(附PDF)
基于Transformer的语言模型已经在自然语言处理(NLP)研究中占据主导地位,现已成为一种新的范式。通过本书,您将学习如何使用Python Transformers库构建各种基于Transformer的NLP应用程序。
2025-05-30 22:18:47
823
原创 五种RAG分块策略详解 + LlamaIndex代码演示
这篇试图说清楚:业界常用的五种 RAG 分块策略核心思想、LlamaIndex 代码演示以及 RAGFlow/Dify 等框架实践思路。
2025-05-29 16:25:03
842
原创 基于Bad Cases的Dify合同审查案例演示(工作流拆解)
在 RAG 流程中,如何实现基于 Bad Cases(负面案例)的合同审查和合同生成(基于合同模板)的提问,算是一个很有代表性的进阶 RAG 应用方向,这篇针对其中的合同审查场景来做些介绍和演示。
2025-05-29 16:21:26
1008
原创 大模型书籍安利:AI大模型训练数据白皮书|附PDF免费下载
本白皮书首先分析了大模型训练所需的数据类型,并从产业实践出发破解了对训练数据的常见迷思和误解。在上述基础上,本书进而对训练数据的质量和规模进行讨论,发现高质量数据应在实践中检验效果,而难以用前置的客观标准衡量。同时,本书探讨了合成数据作为解决高质量训练数据供给不足的新方案,及其在大模型训练中的潜力。
2025-05-29 16:17:02
1139
原创 用 Vue3 + Node.js + RAG 构建 Al 讲义问答系统(接入豆包大模型)
随着大语言模型(LLM)的迅猛发展,将其应用于教育领域的讲义问答成为可能。然而,传统大模型在处理超出训练数据范围的专业问题时,往往会出现 “幻觉”( 即捏造不正确的内容),降低回答的可信度。为了解决这一问题,业界提出了 检索增强生成(RAG,Retrieval-Augmented Generation) 技术。简单来说,RAG 就像让模型在开卷考试 —— 在回答问题前,先从外部知识库(如讲义文档)中检索相关资料提供给模型参考,从而提高答案的准确性并减少不可靠的臆测)。
2025-05-27 12:02:00
1061
原创 「从零实现 RAG:基于 LangChain 的企业级问答系统实战」
在大模型逐渐普及的今天,Retrieval-Augmented Generation(RAG)作为提升模型可靠性和知识覆盖的重要技术方案,越来越多地被用于企业问答、文档助手、客户支持等场景。本文将带你从 0 开始,基于 LangChain 框架,逐步实现一个可落地的 RAG 系统。
2025-05-27 11:59:33
1151
原创 2025 AI大模型报告 | 《中国数字人发展报告(2024)》(附PDF免费下载)
数字人是通过多种数字智能技术创建,具备人类外观形象、声音语言、肢体动作与思维功能等特征的数字智能体。在技术层面,数字人通过数字建模手段实现,涵盖计算机图形学、动作捕捉、图形渲染、语音合成、深度学习等多项技术。当前,数字人正成为人工智能活跃的应用落地入口,对大数据、智能终端、具身智能等产业链接度、嵌入度、融合度较强,或将成为下一代互联网活跃的交互界面之一。
2025-05-23 16:25:37
407
原创 【大语言模型基础】Transformer模型Torch代码详解和训练实战
Transformer是由谷歌在17年提出并应用于神经机器翻译的seq2seq模型,其结构完全通过**自注意力机制**完成对源语言序列和目标语言序列的**全局依赖建模**。Transformer由**编码器**和**解码器**构成。下图展示了它的结构,其左侧和右侧分别对应着编码器(Encoder)和解码器(Decoder)结构,它们均由若干个基本的 **Transformer Encoder/Decoder Block**(N×表示N次堆叠)。
2025-05-23 16:24:19
373
原创 大模型实战:LangChain+WebBaseLoader实现大模型基于网页内容的问答系统
本文将详细介绍一个基于LangChain和Ollama、WebBaseLoader读取指定网页实现的RAG对话系统,从技术原理到实际代码,全面解析如何构建一个具有上下文感知能力的智能问答系统。
2025-05-21 16:23:53
1026
原创 AI大模型书籍:AI大模型训练数据白皮书|附PDF免费下载
本白皮书首先分析了大模型训练所需的数据类型,并从产业实践出发破解了对训练数据的常见迷思和误解。在上述基础上,本书进而对训练数据的质量和规模进行讨论,发现高质量数据应在实践中检验效果,而难以用前置的客观标准衡量。
2025-05-21 16:19:50
666
原创 借助MarsCode AI助手分析LlamaIndex的工作流可视化
我们总结了LlamaIndex工作流的可视化部分的实现和细节,重点分析了如何利用Python中的pyvis库和Java中的图形库,分别在两种语言中构建和展示网络图。通过代码示例,我们详细探讨了如何构建节点、添加边并通过布局生成交互式图形,同时也提到了在Java中使用Jung库和GraphStream库时可能遇到的挑战与解决方案。
2025-05-13 15:26:08
716
原创 LlamaIndex+Ollama构建《劳动法》问答机器人
本文将一步一步引导大家如何使用LlamaIndex和Ollama构建一个针对《劳动法》的问答机器人。这个机器人能够理解并回答关于这本劳动法的各种问题。
2025-05-13 15:17:36
689
原创 99%的人都应该看看这本书,精简小册子让你快速跨入大模型的世界
书中首先介绍了大模型(LLM)的基础知识,包括语言模型、自然语言处理(NLP)以及Transformer架构,帮助读者快速理解GPT-4等模型的工作原理。通过这本书,读者能够快速掌握大模型的基础知识与开发技巧,特别适合初学者与想要在短时间内完成AI应用开发的开发者。在deepseek爆火的现在,大模型已经不再是开发者专享的东西,未来一定是大模型的世界,不管你是做什么工作,都应该来了解大模型,甚至是开始使用大模型。这一部分不仅帮助我理解了大模型的技术本质,也让我对NLP领域的前沿发展有了更系统的认识。
2025-05-07 16:16:09
645
原创 10分钟搭建AI聊天机器人:Python与LangChain实战教程
那天凌晨三点,我还在修复生产环境的bug。无意间打开了同事的代码,发现他用了近500行Python脚本来对接OpenAI API。天呐!这代码看起来像是用血泪写成的…我笑了。这不就是两年前的我吗?当初为了实现一个简单的AI问答功能,写了一堆繁琐的token处理、上下文管理和错误重试逻辑。如今有了,这些痛苦完全可以避免。LangChain到底是什么?它是构建LLM应用的"乐高积木"。Harrison Chase在2022年10月创建它时,可能没想到它会成为AI应用开发的事实标准。让我直接上手吧!
2025-04-28 17:53:57
946
原创 图解 LangChain 知识库导入导出,连续奋战只为你简化数据迁移
LangChain 就像是一个智能搬运工,可以帮你轻松搬运和转换各种知识库数据。2. 转换处理2. 知识库迁移3. 远程存储同步2. 知识库导出备份LangChain库是知识数据管理的得力助手,可以帮你:掌握这些技巧,你就能灵活管理AI知识库了,再也不怕迁移麻烦!反正我都连续肝了三天才把这套方案搞定,现在专门写出来,就是想让你少走弯路!大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “”“”等问题热议不断。不如成为,毕竟AI时代,谁先尝试,谁就能占得先机!想正式转
2025-04-28 17:49:43
1062
原创 AI大模型从概念到实践:RAG:从零开始,100行代码实现一套RAG系统(附代码)
把文档解析,切片,存入向量化库(向量库里存:文档切片,和对应向量)。
2025-04-21 17:06:37
738
原创 2024大模型新书《大模型基础》初学者的必入神器,看完头脑清晰!
为增加本书的易读性,每章分别以一种动物为背景,对具体技术进行举例说明,故此本书以六种动物作为封面。当前版本所含内容均来源于作者团队对相关方向的探索与理解,如有谬误,恳请大家多提issue,多多赐教。后续,作者团队还将继续探索大模型推理加速、大模型智能体等方向。相关内容也将陆续补充到本书的后续版本中,期待封面上的动物越来越多:) 本书当前内容目录如下,本教材为开源教材,旨在为对大语言模型感兴趣的读者。并且,本书还将针对每章内容配备相关的Paper List,以跟踪相关技术的。第 2 章 大语言模型架构。
2025-04-16 16:27:41
169
原创 AI界唯一一本全面解析Transformer的书《Transformer、BERT、GPT 大语言模型原理深度解析》从入门到精通,真是太太太全面了!
此外,随着改进版Transformer架构(如Reformer、Longformer和Switch Transformer等)的出现,其在资源利用效率和处理超长序列的能力上得到了进一步优化和增强。Transformer组件详解:描述了Transformer的几个关键方面,如编码器包含六个包含自我注意力和前馈神经网络两层子层的块,而解码器同样包含六个块,但比编码器多一个用于处理编码器输出的多头注意力层。介绍了生成式人工智能的基本概念,特别是注意力机制这一Transformer架构的关键组件。
2025-04-16 16:25:28
692
原创 8个视觉大模型生成式预训练方法
大语言模型的进展催生出了ChatGPT这样的应用,让大家对“第四次工业革命”和“AGI”的来临有了一些期待,LLM和视觉的结合也越来越多:比如把LLM作为一种通用的接口,把视觉特征序列作为文本序列的PrefixToken,一起作为LLM的输入,得到图片或者视频的caption;也有把LLM和图片生成模型、视频生成模型结合的工作,以更好控制生成的内容。当然2023年比较热门的一个领域便是多模态大模型,比如BLIP系列、LLaVA系列、LLaMA-Adapter系列和MiniGPT系列的工作。
2025-04-14 17:37:01
980
原创 LangChain 实战案例:使用 RAG 技术搭建商品快速查询系统
为了能够实现向量数据库的构建与应用,我们首先需要知道几个小的背景和流程:以上就是对RAG的一些简介,假如希望对创建一个完整的 RAG 系统有更多了解,可以参考我之前基于吴恩达DeepLearning.AI里“LangChain:Chat with your data”写的课程来了解更多信息!根据上面的信息我们其实已经对RAG系统有一个简单的了解了,那么下面我们就可以来更深入的看看如何利用一份简单的商品文档来利用进行构建属于我们自己的数据库问答系统。大家可以创建一个名为“商品详情.csv”的文件,并将下面的内
2025-03-28 16:10:44
625
原创 在自然语言处理(NLP)任务中,怎么处理数据——即怎么把文字输入到模型中进行处理?
文本序列化是自然语言处理任务的前置条件,而文本序列化需要经过分词,构建词汇表和序列化的几个步骤**”**在神经网络或者说在机器学习领域中,数据主要以向量的形式存在,表现形式为多维矩阵;但怎么把现实世界中的数据输入到神经网络中是机器学习的一个前提。但我们也知道,计算机只认识数字,而不认识文字和图片;因此,就需要把这些数据转换为计算机能够识别的格式;而在神经网络模型中就是怎么把这些数据转换为向量的格式。简单来说,就是把现实世界中的数据转化为用多维矩阵进行表示的过程。
2025-03-24 15:23:09
657
原创 基于LLaMA-13B的中英医疗问答模型(LoRA)、实现包括二次预训练、有监督微调、奖励建模、强化学习训练
ModelBase Model在240万条中英文医疗数据集上SFT微调了一版Ziya-LLaMA-13B模型,医疗问答效果有提升,发布微调后的LoRA权重姜子牙通用大模型 V1 是基于 LLaMa 的 130 亿参数的大规模预训练模型,具备翻译,编程,文本分类,信息抽取,摘要,文案生成,常识问答和数学计算等能力。目前姜子牙通用大模型已完成大规模预训练、多任务有监督微调和人类反馈学习三阶段的训练过程。软件依赖。
2025-03-24 15:10:11
617
原创 大模型书籍安利:AI大模型训练数据白皮书|附PDF免费下载
在上述基础上,本书进而对训练数据的质量和规模进行讨论,发现高质量数据应在实践中检验效果,而难以用前置的客观标准衡量。最后,本书论述构建政府和社会力量协同的数据生态对满足大模型训练数据需求的重要性,并以阿里巴巴的实践为案例做说明和阐述。大模型训练数据合规治理之智:重视数据可及性,提升模型安全训练数据供给,应用新技术提升合规性和安全性。同时,本书探讨了合成数据作为解决高质量训练数据供给不足的新方案,及其在大模型训练中的潜力。在训练数据合规方面,针对模型训练的特点,本书提出顺应模型发展的数据治理思路。
2025-03-21 16:07:37
1367
原创 大模型私人定制:短短几行代码微调构建属于你的人工智能大模型(使用unsloth微调DeepSeek-r1大模型)
以上分享了使用框架unsloth在写少量代码情况下微调大模型的实践。相比于之前介绍过的大模型私人定制:使用llama-factory微调Qwen大模型,unsloth虽然需要编写一些代码,但它结构更清晰可控。同时Unsloth的训练性能、支持模型种类要优于llamafactory。当然unsloth和都是很优秀的框架,大家可以凭自己喜好选择微调框架使用。还等什么,快来动手训练属于你“专有领域”的大模型吧~大家在阅读微调分享经常评论到有没有什么微调经验微调参数详细讲解设置的分享微调数据集如何构建。
2025-03-21 16:06:38
1156
原创 从DeepSeek到Manus:如何实现本地LLM微调+联网开发?
1 LLaMA-Factory本地大模型微调2 本地大模型联网功能开发3 业务场景探索4 未来展望与实践建议。
2025-03-21 16:01:44
1542
原创 [特殊字符]太强了!能看图写代码的多模态大模型DeepSeek-VL
🚀 DeepSeekAI,这家得到幻方量化后盾的创新型企业,近期推出了一系列新的多模态大模型:DeepSeek-VL。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。”,模型的表现如何呢?
2025-03-20 15:53:37
478
原创 2025AI大模型报告 | 《中国数字人发展报告(2024)》(附PDF免费下载)
工业和信息化部科技司副司长杜广达近日表示,下一步要持续强化标准引领,推进数字人术语、管理、服务等基础共性标准,数字身份多模态交互等关键技术标准,以及数字客服,数字员工等重点领域服务标准的研究与应用,建立健全数字人的标准体系。工业和信息化部信息通信专家委员会顾问武锁宁也指出,现在中国的数字人产业已经形成了比较完整的产业体系,对于那些需求的潜力比较大,能够实行规模化的应用领域应用侧形成规模化的需求和复制的需求,就有希望带动这个产业循环发展。篇幅太长就不一一展示。
2025-03-20 15:31:57
724
原创 DeepSeek R1 实现本地化部署 + 可视化访问,真的太香了!
Cherry Studio 是一个支持多服务商集成的 AI 对话客户端,CherryStudio 目前支持市面上绝大多数服务商的集成,并且支持多服务商的模型统一调度。官网地址:
2025-03-20 15:28:12
1022
原创 大模型训练全解析:预训练、微调、强化学习,一步到位!
2025年初,随着DeepSeek的迅速走红,公众对LLM(大语言模型)的兴趣急剧上升。许多人被LLM展现出的近乎魔法的能力所吸引。然而,这些看似神奇的模型背后究竟隐藏着什么秘密?接下来,我们将深入探讨LLM的构建、训练和微调过程,揭示它们如何从基础模型演变为我们今天所使用的强大AI系统。这篇文章是我一直想写的,如果你有时间,它绝对值得一读。:我们将介绍LLM的基础知识,涵盖从预训练到后训练的整个过程,探讨神经网络的工作原理、幻觉现象(Hallucinations)以及模型的推理机制。
2025-03-18 17:25:40
1058
原创 大模型实战:如何在 GraphRAG 架构中实现本地知识图谱问
微软最近发布了 Phi-4-mini,这是一个针对资源受限环境的小型模型。为了将任何模型应用于利基领域,需要某种形式的适应。GraphRAG 是一种流行的方法,其中文档被摄取并表示为知识图谱,并用于为模型提供上下文以支持其响应。为了有效地存储这些图,Neo4j 图数据库管理系统是一个不错的选择。在本文中,我们研究了如何启用软件包以成功加载最近发布的 Phi-4-mini。我们开发了一个简单的问答系统来摄取、构建知识图谱并存储在本地 Neo4j 数据库上。
2025-03-18 17:19:52
402
原创 DeepSeek|手把手教你完成AI投喂数据训练
在完成deepseek-r1模型的本地部署后,如何搭建自己的个人知识库,训练(投喂数据)出专属自己的AI工具呢?比如多模态学习:PDF、音频、视频;使AI更加准确的理解我们的意图,更快速完整的给出精准答案,为提供我们更懂、更人性化的服务。follow me,跟着本文下述教程步骤操作就能搞定!此操作使用ollama就可以完成,首先,运行运行我们需要指定好具体的模型名称和大小,即上篇文章安装的本地deepseek-r1:1.5b模型;
2025-03-12 11:42:16
3370
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人