3步在小米13手机跑DeepSeek R1

大家好!我是羊仔,专注AI工具、智能体、编程。

一、从性能旗舰到AI主机

春节大扫除时,翻出尘封的小米13,这台曾以骁龙8 Gen2著称的性能小钢炮,如今正在执行更科幻的使命——本地运行DeepSeek R1。

想起两年前用它连续肝《王者荣耀》四小时的时光,当时绝对想不到,这个6.36英寸的小身板里,正沉睡着一颗即将觉醒的AI心脏。

图片

二、云端囚徒VS本地骑士

总有人嘲笑本地部署是"自行车追高铁",这种说法让羊仔想起当年坚持买断制软件的老程序员——当SaaS服务突然涨价时,他们喝着茶看年轻人焦头烂额的样子特别人间清醒。

1. 网络依赖:在地铁/地库等场景,云端AI瞬间变人工智障

2. 隐私裸奔:你和AI说的每句话都在别人服务器裸泳

3. 算力排队:全民AI时代,云端响应可能比奶茶店取餐还慢

图片

三、部署指南:给手机装上AI引擎

第一步:安装APP

下载并安装PocketPal AI,这个神奇的APP,将成为你的移动AI控制台。

图片

第二步:模型超市

图片

  1. 点击右下角"+"号选择【Add from HuggingFace】

  2. 在搜索框输入"DeepSeek"

  3. 选择适合手机的版本

  4. 趁着下载进度条奔跑时,去泡杯茶

    图片

第三步:唤醒你的AI副驾

图片

点击Load加载模型,加载完成后,记得做一个关键设置:上下文长度拉到4096,避免出现只思考不回答的情况。

图片

然后就可以愉快地和AI对话啦。

图片

四、AI战力榜

设备精度速度(tokens/s)内存占用
小米13Q62841%
FindX7 UltraQ62349%

拿同事的Find X7 Ultra做对比测试时,发现个反直觉现象:天玑9300的AI算力纸面数据更强,但实际生成速度反而落后。

五、模型选择的哲学

用了三天R1后,羊仔还是换回了Qwen2.5。倒不是R1不好,只是它的思考过程像极了话痨导师——明明可以直接给答案,非要先来半小时方法论教学。

图片

这正印证了AI时代的核心法则:没有最好的模型,只有最合适的工具。就像有人爱机械键盘的清脆,有人钟情静电容的温柔。

六、羊仔说

测试完已是凌晨2点,看着窗外零星灯火,突然想起《黑客帝国》里的人类电池矩阵。

而今我们每个人掌心里,似乎都握着一个黑客帝国。

图片

当你在星巴克用手机本地跑AI修改方案时,隔壁小姐姐的云端AI正在排队等响应,这种隐秘的技术代差,比跑分软件里的数字刺激多了。

共勉!

欢迎关注羊仔,一起探索AI,成为超级个体!

记得在看,转,你的每一次互动,对羊仔来说都是莫大的鼓励。

### 移动设备上部署 DeepSeek R1 模型或应用程序 #### 设备兼容性和准备 为了确保 DeepSeek R1 能够顺利运行于移动设备之上,需确认目标设备满足最低硬件需求。通常情况下,现代智能手机具备足够的计算能力来支持轻量级机器学习模型的推理过程[^1]。 #### 开发环境搭建 对于 Android 平台而言,建议采用 TensorFlow Lite 或 PyTorch Mobile 这样的框架来进行开发工作;而对于 iOS,则可以考虑 Core ML 工具链。这些工具提供了将训练好的模型转换成适合移动端使用的格式的功能,并简化了集成流程[^2]。 #### 模型优化与压缩 由于移动终端资源有限,在实际部署前应对原始模型进行必要的剪枝、量化等操作以减小体积并提高效率。这一骤不仅有助于降低内存占用率,还能有效缩短预测时间,从而提升用户体验感[^3]。 #### 应用程序构建 完成上述准备工作之后,即可着手编写具体的应用逻辑代码。这里提供了一个简单的 Python 伪代码片段用于说明如何加载预处理后的 TFLite 版本 DeepSeek R1 模型: ```python import tensorflow as tf interpreter = tf.lite.Interpreter(model_path="deepseek_r1.tflite") input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() def predict(input_data): # 设置输入张量 interpreter.set_tensor(input_details[0]['index'], input_data) # 执行推断 interpreter.invoke() # 获取输出结果 output_data = interpreter.get_tensor(output_details[0]['index']) return output_data ``` 此段代码展示了通过 Tensorflow Lite 解释器实例化模型对象的方法以及定义 `predict` 函数实现基本的数据传递机制[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

羊仔AI探索

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值