预测陕西省非私营单位就业人员平均工资

1、原始数据可视化——全国、各地区、各行业

(1)数据

在这里插入图片描述
在这里插入图片描述

(2)利用arcgis将各个地区的工资可视化在地图上

在这里插入图片描述

(3)全国及各个行业地区平均工资的柱状图、箱线图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2、全国平均工资预测——ARIMA预测

在这里插入图片描述

(1)原始数据

在这里插入图片描述

(2)平稳性检验

ADF检验和差分,一阶差分没有消除趋势性,选择二阶差分效果有很大改善

在这里插入图片描述

(3)选参建模

在这里插入图片描述

(4)模型评估

在这里插入图片描述

残差可视化分析——该模型满足时间序列平稳性、残差独立性、残差正态性,残差同方差性的基本假设

在这里插入图片描述

(5)预测

在这里插入图片描述

3、地区平均工资预测

在这里插入图片描述

(1)ARIMA预测

(a)、原始数据可视化——检查数据趋势、季节性、异常值

在这里插入图片描述

(b)、平稳性检验

在这里插入图片描述

  1. 原始数据的ADF检验结果

    • ADF Statistic: 2.706878330456623
    • p-value: 0.9990873512419572

    这个p值非常高(接近1),表明原始数据序列不是平稳的。我们无法拒绝原假设,即数据存在单位根,数据是非平稳的。

  2. 一次差分后的ADF检验结果

    • ADF Statistic: 0.8121672023048058
    • p-value: 0.9918300523805872

    一次差分后,p值仍然非常高,表示差分后的序列依然是非平稳的。

  3. 二次差分后的ADF检验结果

    • ADF Statistic: -6.489871160612228
    • p-value: 1.2342965906047239e-08

    二次差分后的p值非常低,远小于0.05,这表明我们可以拒绝原假设,即二次差分后的序列是平稳的。

结论:
  • 原始数据非平稳:原始数据存在显著的非平稳性。
  • 一次差分后仍非平稳:一次差分后的数据依然非平稳。
  • 二次差分后达到平稳:二次差分后的数据序列是平稳的。

单次差分结果

在这里插入图片描述

一次差分没有去除趋势影响,因此进行二次差分

在这里插入图片描述

(c)、确定ARIMA模型参数
图解

在这里插入图片描述

自相关和偏自相关——确定AR§、MA(q)阶数

ACF 表示自相关函数,它测量时间序列中每个观测值与之前观测值之间的相关性。如果ACF显示出随着时间间隔的增加而减小,并且最终趋于零,这可能表明时间序列是平稳的。

PACF 表示偏自相关函数,它测量了在控制其他滞后的情况下,两个特定滞后之间的相关性。PACF有助于确定时间序列的滞后阶数。

在这里插入图片描述

(d)、预测结果可视化

在这里插入图片描述

(e)、模型结果及诊断评估
结果

在这里插入图片描述

(f)残差分析

在这里插入图片描述
在这里插入图片描述

进一步检验残差正态性——Q-Q图

在这里插入图片描述

(g)总述
模型系数
  1. 截距项(intercept)
    • 系数:200.5385
    • 标准误差:129.451
    • z值:1.549
    • p值:0.121
    • 95%置信区间:[ -53.181, 454.258]
    • 解释:截距项的p值为0.121,大于常用的显著性水平0.05,表明截距项在统计上不显著。
  2. 噪声项方差(sigma2)
    • 系数:536100.0000
    • 标准误差:97600.000
    • z值:5.495
    • p值:0.000
    • 95%置信区间:[345000.000, 727000.000]
    • 解释:噪声项方差的p值为0.000,小于0.05,表明噪声项方差在统计上显著。
模型总结
  • 模型形式:ARIMA(0,2,0),即这是一个二阶差分的随机游走模型,没有自回归和移动平均项。
  • AIC:629.992
  • BIC:631.655
  • HQIC:630.589
  • 对数似然值:-313.996
诊断统计量
  • Ljung-Box检验(L1)
    • Q值:0.48
    • p值:0.49
    • 解释:Ljung-Box检验的p值为0.49,大于0.05,表明残差序列没有显著的自相关性,符合白噪声的假设。
  • Jarque-Bera检验(JB)
    • 统计量:9.53
    • p值:0.01
    • 解释:Jarque-Bera检验的p值为0.01,小于0.05,表明残差序列不符合正态分布假设。
  • 异方差性检验(H)
    • 统计量:14.97
    • p值:0.00
    • 解释:异方差性检验的p值为0.00,小于0.05,表明残差序列存在异方差性。
  • 偏度(Skew):0.82
  • 峰度(Kurtosis):4.78
    • 解释:残差序列的偏度和峰度表明其分布偏离正态分布,具有右偏和尖峰特性。
(h)、结论
  1. 模型选择
    • ARIMA(0,2,0)模型的AIC为629.992,是在所有尝试的模型中最优的。
  2. 模型拟合
    • 模型的截距项在统计上不显著。
    • 残差序列没有显著的自相关性,但不符合正态分布假设且存在异方差性。
  3. 诊断与改进
    • 尽管模型在AIC准则下是最优的,但残差分析表明其分布不符合正态性且存在异方差性。
    • ACF和PACF图的值都趋近于零,表明序列在滞后k后没有明显的自相关或偏自相关结构,这种情况下,可能是一个随机噪声序列,不适合使用ARIMA模型进行建模

(2)指数回归

(a)拟合可视化

在这里插入图片描述

(b)模型诊断

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

所有地区指数回归可视化结果

在这里插入图片描述

(c)预测

在这里插入图片描述

(3)多项式回归

(a)拟合可视化

在这里插入图片描述

(b)模型诊断

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(c)预测

在这里插入图片描述

(4)模型诊断评估指标总结

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值