以旋转机械故障诊断为例进行说明
分布特征类别 | 具体操作与示例 | 物理意义(旋转机械场景) | 应用场景与作用 |
---|---|---|---|
1. 统计特征 | 计算分布的均值、方差、偏度、峰度 | - 均值:振动信号的平均能量水平 - 峰度:判断振动信号中是否存在异常冲击(如轴承损伤) | 区分平稳运行与突发故障 |
2. 分位数特征 | 提取分布的25%、50%(中位数)、75%分位数 | - 中位数:振动幅度的典型值 - 75%分位数:高频异常振动的强度阈值 | 识别设备亚健康状态(如间歇性振动异常) |
3. 分布形状特征 | 将数据分布与标准分布(如正态分布)对比,计算KL散度或拟合优度 | - 若振动幅度的KL散度高,说明分布偏离正常状态,可能隐含故障模式 | 检测未知故障类型(如新型齿轮磨损模式) |
4. 直方图分桶特征 | 将数据范围划分为若干区间(如每0.5m/s²为一档),统计各区间频率 | - 高频振动集中在高能量区间 → 可能轴承外圈损伤 - 低能量区频率突增 → 传感器噪声或松动 | 定位故障的物理来源(如损伤部件) |
5. 时间窗口分布 | 对滑动时间窗口内的数据计算分布特征(如每10秒窗口的方差) | - 窗口方差持续上升 → 预示设备渐进性磨损 - 窗口峰度突增 → 突发性冲击(如齿轮断齿) | 动态监测设备状态变化趋势 |
6. 多传感器联合分布 | 分析不同传感器数据分布的联合特征(如振动与温度的协方差) | - 振动方差与温度呈正相关 → 可能润滑失效 - 振动峰度高但温度稳定 → 局部机械结构损伤 | 提高多故障并发场景的诊断准确性 |
7. 残差分布 | 对原始信号拟合基线模型(如移动平均),分析残差分布特征 | - 残差分布的偏度左偏 → 存在未被基线模型捕捉的低频异常 - 残差峰度高 → 高频噪声干扰 | 分离背景噪声与真实故障信号 |
轴承故障诊断中的分布特征
故障类型 | 振动信号分布特征 | 可提取的机器学习特征 |
---|---|---|
正常轴承 | 振动幅度接近正态分布,峰度低(无异常冲击) | 均值=0.5m/s²,峰度=2.1,75%分位数=0.8m/s² |
外圈损伤 | 分布右偏(高频冲击增多),峰度高 | 偏度=1.8,峰度=6.5,90%分位数=2.3m/s² |
润滑不良 | 分布扁平化(方差增大),与温度分布协方差升高 | 方差=0.4,振动-温度协方差=0.7,KL散度(vs正常)=0.9 |
知乎学术咨询(哥廷根数学学派):
担任《Mechanical System and Signal Processing》《中国电机工程学报》等期刊审稿专家,擅长领域:信号滤波/降噪,机器学习/深度学习,时间序列预分析/预测,设备故障诊断/缺陷检测/异常检测。