旋转机械故障诊断中基于分布特征建模的机器学习方法研究——从传感器数据分布到故障分类的工业特征工程实践

以旋转机械故障诊断为例进行说明

分布特征类别具体操作与示例物理意义(旋转机械场景)应用场景与作用
1. 统计特征计算分布的均值、方差、偏度、峰度- 均值:振动信号的平均能量水平
- 峰度:判断振动信号中是否存在异常冲击(如轴承损伤)
区分平稳运行与突发故障
2. 分位数特征提取分布的25%、50%(中位数)、75%分位数- 中位数:振动幅度的典型值
- 75%分位数:高频异常振动的强度阈值
识别设备亚健康状态(如间歇性振动异常)
3. 分布形状特征将数据分布与标准分布(如正态分布)对比,计算KL散度或拟合优度- 若振动幅度的KL散度高,说明分布偏离正常状态,可能隐含故障模式检测未知故障类型(如新型齿轮磨损模式)
4. 直方图分桶特征将数据范围划分为若干区间(如每0.5m/s²为一档),统计各区间频率- 高频振动集中在高能量区间 → 可能轴承外圈损伤
- 低能量区频率突增 → 传感器噪声或松动
定位故障的物理来源(如损伤部件)
5. 时间窗口分布对滑动时间窗口内的数据计算分布特征(如每10秒窗口的方差)- 窗口方差持续上升 → 预示设备渐进性磨损
- 窗口峰度突增 → 突发性冲击(如齿轮断齿)
动态监测设备状态变化趋势
6. 多传感器联合分布分析不同传感器数据分布的联合特征(如振动与温度的协方差)- 振动方差与温度呈正相关 → 可能润滑失效
- 振动峰度高但温度稳定 → 局部机械结构损伤
提高多故障并发场景的诊断准确性
7. 残差分布对原始信号拟合基线模型(如移动平均),分析残差分布特征- 残差分布的偏度左偏 → 存在未被基线模型捕捉的低频异常
- 残差峰度高 → 高频噪声干扰
分离背景噪声与真实故障信号

轴承故障诊断中的分布特征

故障类型振动信号分布特征可提取的机器学习特征
正常轴承振动幅度接近正态分布,峰度低(无异常冲击)均值=0.5m/s²,峰度=2.1,75%分位数=0.8m/s²
外圈损伤分布右偏(高频冲击增多),峰度高偏度=1.8,峰度=6.5,90%分位数=2.3m/s²
润滑不良分布扁平化(方差增大),与温度分布协方差升高方差=0.4,振动-温度协方差=0.7,KL散度(vs正常)=0.9

知乎学术咨询(哥廷根数学学派):

担任《Mechanical System and Signal Processing》《中国电机工程学报》等期刊审稿专家,擅长领域:信号滤波/降噪,机器学习/深度学习,时间序列预分析/预测,设备故障诊断/缺陷检测/异常检测。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值