关于交通流预测方法的总结

历史平均法

优势:模型算法简单,运行速度快,执行时间开销小。

不足:模型根据历史数据均值预测未来数据,简单的线性运算不能表征时空序列深层次的非线性关系。对于数据扰动性强的数据预测不理想。

发展方向:历史平均模型通过历史数据进行的加权运算,因算法简单,已不再被学者们所研究。

时间序列模型

优势:模型算法简单,不需要外部其他变量,在交通流平稳的道路上有着较高预测精度。

不足:不适用非平稳的交通流,且需要复杂的参数估计。当交通流量数据变化剧烈时,需耗费时间进行平稳化,预测精度较低,不适用于复杂路段的交通流量预测。

发展方向:提高时间序列模型的鲁棒性,使其可适应波动较大的数据。可通过与其它模型相组合、改善非平稳性转换算法等措施来提高模型的预测性能。

卡尔曼滤波模型

优势:对非平稳交通流序列适应性更强,可灵活选择预测因子,迭代性的特性使其更适合处理短期交通流量预测情况。

不足:因其具有迭代性,需不断进行大量矩阵运算,算法时间开销大,无法适应交通流的非线性变化。

发展方向:改进卡尔曼滤波的状态转移方程、组合其他模型等多种方式适应交通流的非线性变化。

KNN 模型

优势:可移植性高,无需复杂的参数调整,模型只需微调即可适应多路段交通流量预测。模型精度高,对非线性、非齐次场景效果好。因其传入模型的数据保留其随机性的特点,适用于短时交通状态的预测。

不足:训练需要大量历史数据,模型收敛速度慢,运行时间长,可能不能满足道路交通流实时性预测的要求。

发展方向:KNN模型中K值影响模型的预测精度,可通过参数寻优等方法选取最优K值;交通状态向量的合理划分、近邻搜索机制算法的优化也是影响基于KNN 算法的交通流预测模型的重要因素。

马尔可夫模型

优势:因通过状态转移概率预测预测数据,可考虑道路不同路段之间的关系。

不足:模型无记忆性,系统过去状态与当前状态无关,不能挖掘交通流量周期性的特点。

发展方向:马尔可夫模型依赖于状态转移机制,交通系统中状态的合理选择、状态转移概率公式的优化还有待提升。如何考虑交通流周期性及空间性的特性目前还是研究的重点,有待进一步挖掘。

SVM模型

优势:通过引入核函数对复杂的交通流等非线性数据进行分类,适用于小样本数据进行预测,泛化能力强。

不足:核函数的种类及其参数的确定影响模型预测的精度,复杂的参数寻优会造成大量时间开销。对数据量大、影响因素多的交通流数据预测精度不高。

发展方向:已有学者们已经开始基于核函数进行优化,最优核函数还将继续成为基于SVM 的交通流预测模型的研究重点。因SVM在处理非线性数据时需将低维数据映射到高维的特征空间上,维度的增加必然导致算法的复杂程度增加,如何在处理复杂的交通流数据时减少时间开销成本也有待解决。

时空序列模型

优势:相比于考虑图结构的深度学习模型,模型训练速度更快,算法效率更高;不需要额外的图结构存储空间。

不足:并不能全局感知道路之间的空间特征,在空间结构较为复杂的道路路段预测精度相比图结构模型较低。

发展方向:可继续进行CNN、RNN 网络与传统机器学习算法、统计学算法的组合尝试,依赖每种模型的优势在保证模型预测精度的前提下提高运行效率。

图结构模型

优势:因将道路的各个路段建模为图结构,可充分考虑路段之间的邻接关系,相比于传统的深度学习模型,模型预测精度更高。在处理复杂路网问题上,模型精度较非图时序序列模型有较大的提升。

不足:事先需要获知各个路段的邻接关系,在有些情况下无法实现;道路关系简单、数据量少的场景下预测精度较非图模型差距不大,但增加了系统在时间与空间的开销成本。

发展方向:数据定义上,可寻求改善图结构的存储形式,如融合距离因素构造图邻接矩阵、融合周期性因素、社会因素等构造融合序列等;网络架构上,诸如添加注意力机制、设计多信息融合组件网络等,使模型提取更多的特征信息。

mbd.pub/o/GeBENHAGEN

擅长现代信号处理(改进小波分析系列,改进变分模态分解,改进经验小波变换,改进辛几何模态分解等等),改进机器学习,改进深度学习,机械故障诊断,改进时间序列分析(金融信号,心电信号,振动信号等)

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值