Java数据结构之二叉树—理论图文篇

 本篇思路大纲:

本篇博客的重点在于树的介绍,其中最重要的式二叉树的有关概念和遍历的方法

思维导图:

引入前言:

一对一的线性结构,如顺序表和链表,但还有很多一对多的情况,所以引入“树”,一对多的结构。
 

树的概念:


树(Tree)是n(n≥0)个结点的有限集。n=0时称为空树。在任意一棵非空树中:

(1)有且仅有一个特定的称为根(Root)的结点

(2)当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1、T2、……、Tm,其中每一个集合本身又是一棵树,并且称为根的子树(SubTree)。
 

 注意:

1.n>0时根结点是唯一的,不可能存在多个根结点,数据结构中的树是只能有一个根结点

2.m>0时,子树的个数没有限制,但它们一定是互不相交的

像下面的结构就不符合树的定义,因为它们都有相交的子树。

 结点的分类:

树的结点包含一个数据元素及若干指向其子树的分支。结点拥有的子树数称为结点的度(De-gree)。度为0的结点称为叶结点(Leaf)或终端结点;度不为0的结点称为非终端结点或分支结点。除根结点之外,分支结点也称为内部结点树的度是树内各结点的度的最大值

如图所示,因为这棵树结点的度的最大值是结点D的度,为3,所以树的度也为3。
 

结点间的关系:

结点的子树的根称为该结点的孩子(Child),相应地,该结点称为孩子的双亲(Parent)。

同一个双亲的孩子之间互称兄弟(Sibling)。结点的祖先是从根到该结点所经分支上的所有结点。

所以对于H来说,D、B、A都是它的祖先。反之,以某结点为根的子树中的任一结点都称为该结点的子孙。B的子孙有D、G、H、I,如图。

树的其他相关概念:

结点的层次(Level)从根开始定义起,根为第一层,根的孩子为第二层。若某结点在第l层,则其子树就在第l+1层。其双亲在同一层的结点互为堂兄弟。

图中的D、E、F是堂兄弟,而G、H、I与J也是堂兄弟。树中结点的最大层次称为树的深度(Depth)或高度,当前树的深度为4。

如果将树中结点的各子树看成从左至右是有次序的,不能互换的,则称该树为有序树,否则称为无序树
森林(Forest)是m(m≥0)棵互不相交的树的集合。对树中每个结点而言,其子树的集合即为森林。

线性结构和树结构的对比:

线性结构:
第一个数据元素:无前驱

最后一个数据元素:无后继

中间元素:一个前驱一个后继

树结构
·根结点:无双亲,唯一
·叶结点:无孩子,可以多个
·中间结点:一个双亲多个孩子


树的抽象数据类型:

 树是由一个根结点和若干棵子树构成。树中结点具有相同数据类型及层次关系
 

树的存储结构:

 利用顺序存储和链式存储结构的特点,可以实现对树的存储结构的表示。

有三种不同的表示法:双亲表示法孩子表示法孩子兄弟表示法

双亲表示法:

 二叉树:

二叉树的定义:

 概念:
一棵二叉树是结点的一个有限集合,该集合:
1. 或者为空
2. 或者是由一个根节点加上两棵别称为左子树和右子树的二叉树组成。

从上图可以看出:
1. 二叉树不存在度大于2的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

注意:对于任意的二叉树都是由以下几种情况复合而成的: 


二叉树的特点有:

 每个结点最多有两棵子树,所以二叉树中不存在度大于2的结点。

注意:不是只有两棵子树,而是最多有。没有子树或者有一棵子树都是可以的。
左子树和右子树是有顺序的,次序不能任意颠倒。即使树中某结点只有一棵子树,也要区分它是左子树还是右子树。
例如:树1和树2是同一棵树,但它们却是不同的二叉树。

二叉树具有五种基本形态:

1.空二叉树。 2.只有一个根结点。 3.根结点只有左子树。 4.根结点只有右子树。 5.根结点既有左子树又有右子树。
拿三个结点的来举例:

若只从形态上考虑,三个结点的树只有两种情况,那就是图中有两层的树1和有三层的后四种的任意一种。

但对于二叉树来说,由于要区分左右,所以就演变成五种形态,树2、树3、树4和树5分别代表不同的二叉树。

特殊二叉树:

 1.斜树
斜树一定要是斜的。所有的结点都只有左子树的二叉树叫左斜树。所有结点都是只有右子树的二叉树叫右斜树。这两者统称为斜树

图中的树2就是左斜树,树5就是右斜树。斜树有很明显的特点,就是每一层都只有一个结点,结点的个数与二叉树的深度相同。

2.满二叉树

在一棵二叉树中,如果所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上,这样的二叉树称为满二叉树单是每个结点都存在左右子树,不能算是满二叉树,还必须要所有的叶子都在同一层上,这就做到了整棵树的平衡。

满二叉树: 一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树。也就是说,如果一棵二叉树的层数为K,且结点总数是 ,则它就是满二叉树。

满二叉树的特点有:

(1)叶子只能出现在最下一层。出现在其他层就不可能达成平衡。(2)非叶子结点的度一定是2。(3)在同样深度的二叉树中,满二叉树的结点个数最多,叶子数最多。

3.完全二叉树
对一棵具有n个结点的二叉树按层序编号,如果编号为i(1≤i≤n)的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这棵二叉树称为完全二叉树,如图。

“完全”和“满”的差异:

满二叉树一定是一棵完全二叉树,但完全二叉树不一定是满的。
其次,完全二叉树的所有结点与同样深度的满二叉树,它们按层序编号相同的结点,是一一对应的。

这里有个关键词是按层序编号,像图1中的树1,因为5结点没有左子树,却有右子树,那就使得按层序编号的第10个编号空档了。同样道理,图1中的树2,由于3结点没有子树,所以使得6、7编号的位置空档了。图1中的树3又是因为5编号下没有子树造成第10和第11位置空档。

只有图2中的树,尽管它不是满二叉树,但是编号是连续的,所以它是完全二叉树。

图1

图2

 

完全二叉树的特点:

(1)叶子结点只能出现在最下两层。(2)最下层的叶子一定集中在左部连续位置。(3)倒数二层,若有叶子结点,一定都在右部连续位置。(4)如果结点度为1,则该结点只有左孩子,即不存在只有右子树的情况。(5)同样结点数的二叉树,完全二叉树的深度最小。

判断某二叉树是否是完全二叉树的办法:看着树的示意图,给每个结点按照满二叉树的结构逐层顺序编号,如果编号出现空档,就说明不是完全二叉树,否则就是。

二叉树的性质:

二叉树性质1:

在二叉树的第i层上至多有2^(i-1)个结点 

二叉树性质2

 深度为k的二叉树至多有2^k-1个结点(k≥1)

二叉树性质3

对任何一棵二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1
终端结点数其实就是叶子结点数,而一棵二叉树,除了叶子结点外,剩下的就是度为1或2的结点数了,我们设n1为度是1的结点数。则树T结点总数n=n0+n1+n2。

二叉树性质4

 具有n个结点的完全二叉树的深度为(|x|表示不大于x的最大整数)

二叉树性质5

如果对一棵有n个结点的完全二叉树(其深度为)的结点按层序编号(从第1层到第层,每层从左到右),对任一结点i(1≤i≤n)有:
1.如果i=1,则结点i是二叉树的根,无双亲;如果i>1,则其双亲是结点。
2.如果2*i>n,则结点i无左孩子(结点i为叶子结点);否则其左孩子是结点2*i。
3.如果2*i+1>n,则结点i无右孩子;否则其右孩子是结点2*i+1。

例如:这是一个完全二叉树,深度为4,结点总数是10。

对于第一条来说是很显然的,i=1时就是根结点。i>1时,比如结点7,它的双亲就是,结点9,它的双亲就是。
第二条,比如结点6,因为2×6=12超过了结点总数10,所以结点6无左孩子,它是叶子结点。同样,而结点5,因为2×5=10正好是结点总数10,所以它的左孩子是结点10。
第三条,比如结点5,因为2×5+1=11,大于结点总数10,所以它无右孩子。而结点3,因为2×3+1=7小于10,所以它的右孩子是结点7。

二叉树的性质总结:

1. 若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有 2^i - 1(i>0)个结点
2. 若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结点数是 2^k -1 (k>=0)
3. 对任何一棵二叉树, 如果其叶结点个数为 n0, 度为2的非叶结点个数为 n2,则有n0=n2+1
4. 具有n个结点的完全二叉树的深度k为上取整
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有节点从0开始编号,则对于序号为i
的结点有:
若i>0,双亲序号:(i-1)/2;i=0,i为根结点编号,无双亲结点
若2i+1<n,左孩子序号:2i+1,否则无左孩子
若2i+2<n,右孩子序号:2i+2,否则无右孩子

 二叉树的存储结构:

二叉树顺序存储结构:

二叉树的顺序存储结构就是用一维数组存储二叉树中的结点,并且结点的存储位置,也就是数组的下标要能体现结点之间的逻辑关系,比如双亲与孩子的关系,左右兄弟的关系等。
 先来看看完全二叉树的顺序存储

将这棵二叉树存入到数组中,相应的下标对应其同样的位置,如图所示

 对于一般的二叉树,尽管层序编号不能反映逻辑关系,但是可以将其按完全二叉树编号,只不过,把不存在的结点设置为“∧”

如图6-7-3,注意浅色圈起来结点表示不存在

顺序存储结构一般只用于完全二叉树。
因为当出现如下情况,会出现很大的浪费

二叉链表:

二叉树每个结点最多有两个孩子,设计一个数据域和两个指针域,我们称这样的链表叫做二叉链表。 

如果有需要,还可以再增加一个指向其双亲的指针域,那样就称之为三叉链表

二叉树的链式存储是通过一个一个的节点引用起来的,常见的表示方式有二叉和三叉表示方式: 

// 孩子表示法
class Node {
int val; // 数据域
Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
}
// 孩子双亲表示法
class Node {
int val; // 数据域
Node left; // 左孩子的引用,常常代表左孩子为根的整棵左子树
Node right; // 右孩子的引用,常常代表右孩子为根的整棵右子树
Node parent; // 当前节点的根节点

 遍历二叉树:

二叉树遍历原理

 对于二叉树的遍历来讲,次序很重要。
 二叉树的遍历(traversing binary tree)是指从根结点出发,按照某种次序依次访问二叉树中所有结点,使得每个结点被访问一次且仅被访问一次。
这里有两个关键词:访问和次序。

 二叉树的遍历次序不同于线性结构,最多也就是从头至尾、循环、双向等简单的遍历方式。树的结点之间不存在唯一的前驱和后继关系,在访问一个结点后,下一个被访问的结点面临着不同的选择。由于选择方式的不同,遍历的次序就完全不同了。

二叉树遍历方法:

二叉树的遍历方式可以很多,如果我们限制了从左到右的习惯方式,那么主要就分为四种:

  1.前序遍历

 规则是若二叉树为空,则空操作返回,否则先访问根结点,然后前序遍历左子树,再前序遍历右子树。

如图,遍历的顺序为:ABDGH-CEIF。

开始第一个是根节点

2.中序遍历

 规则是若树为空,则空操作返回,否则从根结点开始(注意并不是先访问根结点),中序遍历根结点的左子树,然后是访问根结点,最后中序遍历右子树。

如图,遍历的顺序为:GDHBAE-ICF。

根节点在居中的某个位置,根节点两边的分别是此结点左右两端的子树
 

3.后序遍历

 规则是若树为空,则空操作返回,否则从左到右先叶子后结点的方式遍历访问左右子树,最后是访问根结点。

如图,遍历的顺序为:GHDBIEFCA。

最后一个出现的是根结点(A)
 

4.层序遍历

 规则是若树为空,则空操作返回,否则从树的第一层,也就是根结点开始访问,从上而下逐层遍历,在同一层中,按从左到右的顺序对结点逐个访问。

如图,遍历的顺序为:ABCDEFGHI。
 

对于计算机来说,它只有循环、判断等方式来处理,也就是说,它只会处理线性序列,四种遍历方法,其实都是在把树中的结点变成某种意义的线性序列,这就给程序的实现带来了好处。
另外不同的遍历提供了对结点依次处理的不同方式,可以在遍历过程中对结点进行各种处理。

不能确定左右树,只有中序能确定左右树;

前序遍历加中序遍历或者后序遍历加中序遍历可以确定树

前序遍历算法:

 二叉树的定义是用递归的方式,所以,实现遍历算法也可以采用递归 

中序遍历算法:

后序遍历算法:

推到遍历结果:

 二叉树的建立:

其实建立二叉树,也是利用了递归的原理。只不过在原来应该是打印结点的地方,改成了生成结点、给结点赋值的操作而已。 



 

  • 14
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值