洛谷 P1217 [USACO1.5] 回文质数 Prime Palindromes

本题AC的很不容易55a1763b5ca147989323785469d4a593.png,断断续续写了一天,遇到很多问题。

题目描述

因为 151 既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151 是回文质数。

写一个程序来找出范围 [a,b](5≤a<b≤100,000,000)(一亿)间的所有回文质数。

输入格式

第一行输入两个正整数 a 和 b。

输出格式

输出一个回文质数的列表,一行一个。

输入输出样例

输入 

5 500

输出 

5
7
11
101
131
151
181
191
313
353
373
383

说明/提示

Hint 1: Generate the palindromes and see if they are prime.

提示 1: 找出所有的回文数再判断它们是不是质数(素数).

Hint 2: Generate palindromes by combining digits properly. You might need more than one of the loops like below.

提示 2: 要产生正确的回文数,你可能需要几个像下面这样的循环。

题目翻译来自NOCOW。

USACO Training Section 1.5

产生长度为 55 的回文数:

for (d1 = 1; d1 <= 9; d1+=2) {    // 只有奇数才会是素数
     for (d2 = 0; d2 <= 9; d2++) {
         for (d3 = 0; d3 <= 9; d3++) {
           palindrome = 10000*d1 + 1000*d2 +100*d3 + 10*d2 + d1;//(处理回文数...)
         }
     }
 }

以上是题目给的提示,代码部分我不是很明白,但大概意思就是先找出回文数,再判断质数。 

#include<stdio.h>
int count = 0;
int arr[10000] = { 0 };  //数组中元素全部初始化为0

int palindrome(int n)    //判断回文数
{
	int num = 0;
	int temp = n;
	while (temp)
	{
		num = num * 10 + temp%10;
		temp /= 10;
	}
	if (num == n)  //逆序数与原数相等,则为回文数
		return 1;
	else
		return 0;
}

int isprime(int n)    //判断质数
{
	for (int i = 2; i * i <= n; i++)
	{
		if (n % i == 0)
			return 0;
	}
	return 1;
}

void pd(int n, int m)  //先将回文数存放在数组中
{
	if (n % 2 == 0)  //如果n为偶数,则加一,保证后面循环全为奇数
		n++;
	if (m > 9999999)   //这一步单独说
		m = 9999999;  
	for (int i = 0;;)    //i为数组下标
	{
		for (int j = n; j <= m; j += 2)  //j均为奇数,排除偶数,减少循环次数
		{
			if (palindrome(j))  //判断j是否为回文数
			{
				arr[i] = j;  //将回文数存放在数组中
				count++;  //计算回文数个数,count初始值为0,方便后面数组输出操作
				i++;
			}

		}
		if (arr[i] == 0)  //当循环到数组元素为0时,说明回文数已全部存入
			break;
	}
}

int main()
{
	int a, b;
	scanf("%d%d", &a, &b);
	pd(a, b);    //判断回文数
	for (int i = 0; i < count; i++)
	{
		if (isprime(arr[i]))  //将数组中的回文数进行质数判断
			printf("%d\n", arr[i]);
	}
	return 0;
}
if (m > 9999999)   
	m = 9999999; 

 这一步很容易忽略,少了这步,只能88%。除了11以外,一个数的位数是偶数的话,就不可能为回文数素数。同时限制右边界,可以减少大量循环。

本题需要尽可能地减少循环次数  1.从奇数开始找回文数  2.回文质数没有偶数位

 

### 回答1: 题目描述: 给定一个整数 $N$,求出大于 $N$ 的最小的既是质数又是回文数的数。 回文数指的是正着读和倒着读都一样的数字,例如 12321 就是一个回文数。 输入格式: 输入共 1 行,包含一个整数 $N$。 输出格式: 输出共 1 行,包含一个整数,表示题目所求的数。 数据范围: $1≤N≤10^7$ 样例: 输入: 31 输出: 101 解题思路: 从 $N$ 开始遍历,判断每一个数是否既是质数又是回文数。如果找到了这样的数,直接输出即可。 判断是否为质数可以用较为简单的暴力算法,枚举 $2$ 到 $\sqrt{x}$ 之间的所有数,看是否存在约数。 判断是否为回文数可以将该数转化为字符串,然后比较正序字符串和倒序字符串是否相等即可。 注意,本题所求的数可能非常大,需要使用 long long 类型存储,并且需要使用快速幂算法来快速计算幂次。同时,因为奇数位的回文数一定不是 11 的倍数,因此可以只枚举奇数位的回文数。 ### 回答2: 题目要求找出范围在2到N(包括2和N)之间的回文质数。所谓回文质数是指既是质数又是回文数的数。质数是指除了1和自身以外没有其他因数的正整数。 首先,我们先定义两个函数:一个是用来判断一个数是否为质数的函数is_prime,另一个是用来判断一个数是否为回文数的函数is_palindrome。 is_prime函数的实现方法如下:从2到该数的平方根进行遍历,判断是否存在该数的因数,如果存在则返回False,代表不是质数,如果遍历结束都没有找到因数,则返回True,代表是质数。 is_palindrome函数的实现方法如下:将该数字转化为字符串,并判断该字符串与其翻转后的字符串是否相等,如果相等则返回True,代表是回文数,否则返回False,代表不是回文数。 接下来,我们在范围从2到N进行遍历,对每个数字都进行is_prime和is_palindrome的判断,如果都满足条件,则将该数字输出。 下面是代码实现的伪代码: ``` function is_prime(num): if num < 2: return False for i in range(2, int(num**0.5)+1): if num % i == 0: return False return True function is_palindrome(num): num_str = str(num) if num_str == num_str[::-1]: return True return False function prime_palindromes(N): for num in range(2, N+1): if is_prime(num) and is_palindrome(num): print(num) ``` 以上是本题的解题思路和伪代码实现,希望能对你有所帮助。 ### 回答3: 题目要求找出所有小于等于N的回文质数回文数是指正读反读都相同的数,例如121、12321都是回文数。质数是只能被1和自身整除的数,例如2、3、5、7都是质数。 首先,我们可以编写一个函数来判断一个数是否为质数。函数的输入是一个正整数n,判断n是否能被小于n的所有数整除,如果能则返回False,否则返回True。 接下来,我们可以编写一个函数来判断一个数是否为回文数。函数的输入是一个正整数n,将n转换成字符串并反转,然后与原字符串进行比较,如果相同则返回True,否则返回False。 在主函数中,我们可以遍历1到N之间的所有数,对于每个数,首先判断是否为回文数,如果不是则跳过;然后判断是否为质数,如果是则输出该数。 最后,我们可以将上述步骤封装成一个循环,将N从2逐渐增加,直到N超过题目要求的上限。 以下是代码实现: def is_prime(n): for i in range(2, n): if n % i == 0: return False return True def is_palindrome(n): s = str(n) if s == s[::-1]: return True return False N = int(input()) for n in range(2, N + 1): if is_palindrome(n) and is_prime(n): print(n) 希望能够帮助你解答问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值