15-4连续子串和的整除问题

问题描述

小M是一个五年级的小学生,今天他学习了整除的知识,想通过一些练习来巩固自己的理解。他写下了一个长度为 n 的正整数序列 a_0, a_1, ..., a_{n-1},然后想知道有多少个连续子序列的和能够被一个给定的正整数 b 整除。你能帮小M解决这个问题吗?


测试样例

样例1:

输入:n = 3,b = 3,sequence = [1, 2, 3]
输出:3

样例2:

输入:n = 4,b = 5,sequence = [5, 10, 15, 20]
输出:10

样例3:

输入:n = 5,b = 2,sequence = [1, 2, 3, 4, 5]
输出:6

def solution(n, b, sequence):
    count = 0  # 用于记录符合条件的子序列数量
    
    # 外层循环,确定子序列的起始位置
    for start in range(n):
        current_sum = 0  # 当前子序列的和
        
        # 内层循环,确定子序列的结束位置
        for end in range(start, n):
            current_sum += sequence[end]  # 更新当前子序列的和
            
            # 检查当前和是否能被 b 整除
            if current_sum % b == 0:
                count += 1  # 如果可以整除,则计数加一
                
    return count  # 返回符合条件的子序列数量

if __name__ == "__main__":
    # 测试样例
    sequence1 = [1, 2, 3]
    print(solution(3, 3, sequence1) == 3)  # 输出: True

    sequence2 = [5, 10, 15, 20]
    print(solution(4, 5, sequence2) == 10)  # 输出: True

    sequence3 = [1, 2, 3, 4, 5]
    print(solution(5, 2, sequence3) == 6)  # 输出: True

    # 其他测试用例
    sequence4 = [1, 1, 1, 1]
    print(solution(4, 2, sequence4) == 10)  # 输出: True (所有子序列的和都是 1 或 2 的倍数)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值