1 什么是递归算法
在数学与计算机科学中,递归(Recursion)是指在函数的定义中使用函数自身的方法。实际上,递归,顾名思义,其包含了两个意思:递 和 归,这正是递归思想的精华所在。
2 递归算法的优越性
可以将 大的复杂的问题分解成简答的问题来求解。通过少量程序就可以描述出原有的大量计算,从而减少代码量,简洁易懂。
3 递归的应用
例如求解x的n次方时(递归算法)
可以把这个数先进行拆分
x^n=x*x^n-1
在进行分类后可得
x^0=1(n=0)
x^1=x*x^0(n=1)
x^2=x*x^1(n>1)
x^3=x*x^2(n>1)
......
x^n=x*x^n-1(n>1)
那么思路如下
(1)先定义一个子程序xn(int n)求x^n 其中若满足n>=1时进行调用xn(n-1)的方式再来求解;
(2)当调用至n=0时终止,在进行本层的后续语句;
(3)当子程序运行完后就结束这次调用,返回至上层调用语句的地方执行后继语句;
(4)继续进行步骤(3),从调用中逐层返回,回到主程序,得出结果。
代码实现:
#include<iostream>
using namespace std;
int xn(int);
int x;
int main()
{
int n; //定义子程序
cin>>x>>n;
cout<<x<<"^"<<<<"="<<xn(n)<<endl;
return 0;
}
int xn(int n)
{
if(n==0) return 1; //式
else return x*xn(n-1); //边界
}