什么是递归算法

递归算法是函数定义中使用自身的一种方法,常用于将复杂问题分解为简单部分解决。在计算x的n次方时,通过递归可以将问题简化为x*x^(n-1),直到n=0时返回1。文章提供了一个递归算法的C++实现,演示了如何计算x^n。
摘要由CSDN通过智能技术生成

1 什么是递归算法
在数学与计算机科学中,递归(Recursion)是指在函数的定义中使用函数自身的方法。实际上,递归,顾名思义,其包含了两个意思:递 和 归,这正是递归思想的精华所在。
2 递归算法的优越性
可以将  大的复杂的问题分解成简答的问题来求解。通过少量程序就可以描述出原有的大量计算,从而减少代码量,简洁易懂。
3 递归的应用


例如求解x的n次方时(递归算法)
可以把这个数先进行拆分
x^n=x*x^n-1
在进行分类后可得
x^0=1(n=0)
x^1=x*x^0(n=1)
x^2=x*x^1(n>1)
x^3=x*x^2(n>1)
......
x^n=x*x^n-1(n>1)
那么思路如下
   (1)先定义一个子程序xn(int n)求x^n   其中若满足n>=1时进行调用xn(n-1)的方式再来求解;
   (2)当调用至n=0时终止,在进行本层的后续语句;
   (3)当子程序运行完后就结束这次调用,返回至上层调用语句的地方执行后继语句;
   (4)继续进行步骤(3),从调用中逐层返回,回到主程序,得出结果。
代码实现:

#include<iostream>
using namespace std;
int xn(int);
int x;
int main()
{
    int n;           //定义子程序
    cin>>x>>n;
    cout<<x<<"^"<<<<"="<<xn(n)<<endl;
    return 0;
}
int xn(int n)
{
    if(n==0) return 1;    //式
    else return x*xn(n-1);    //边界
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值