【机器学习】特征工程 - 字典特征提取_机器学习字典(1)

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新网络安全全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上网络安全知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip204888 (备注网络安全)
img

正文

  • DictVectorizer.fit_transform( data ):接收字典类型的原始数据,返回提取的数字特征(sparse矩阵)
  • DictVectorizer.inverse_transform( data ):将提取的数字特征,转回原始数据。
  • DictVectorizer.get_feature_names_out():返回特征名字

一、提取数字特征

我们准备一个字典类型的数据,然后「提取」数字特征。

from sklearn import feature_extraction

# 原始数据(字典)
old_data = [
    {'name': "张三", 'age': 18},
    {'name': "李四", 'age': 20}]

# 初始化
vector = feature_extraction.DictVectorizer(sparse=False)

# 转换数据
new_data = vector.fit_transform(old_data)
print(new_data)

输出:

[[18.  1.  0.]
 [20.  0.  1.]]

二、特征名字

如果想知道提取的数字特征是什么意思,可以用 get_feature_names_out() 获取「特征名字」,也就是特征和原始数据的对应关系。

from sklearn import feature_extraction

# 原始数据(字典)
old_data = [
    {'name': "张三", 'age': 18},
    {'name': "李四", 'age': 20},
    {'name': "王五", 'age': 22}]

# 初始化
vector = feature_extraction.DictVectorizer(sparse=False)

# 转换数据
new_data = vector.fit_transform(old_data)
print(new_data)
# 特征名字
print(vector.get_feature_names_out())

输出:

[[18.  1.  0.  0.]
 [20.  0.  1.  0.]
 [22.  0.  0.  1.]]
['age' 'name=张三' 'name=李四' 'name=王五']

接下来,解释一下提取的数字特征是什么意思。提取的数字特征是个二维数组,里面包含了三个数组。

一个数组即一行,代表一个样本;而一列,就代表一个特征。比如上面这个特征:

每个数组的第一列是age特征,age本来就是数字,所以就没必要转换了;
第二列是张三特征,用0和1表示,1表示name是张三,0表示name不是张三;
第三列是李四特征,1表示name是李四,0表示name不是李四;
第四列十王五特征,1表示name是王五,0表示name不是王五。

如果没看懂,可以自己修改原始数据,然后查看输出的结果。

这个提取的数字特征数组,其位置和特征类型有关,比如这里有 age、张三、李四、王五 四种特征类型,那么数字特征数组就有4个位置。如果特征类型有五种,那么数字特征数组就会变成5个位置,以此类推。这种提取方式也叫 one-hot编码,

三、返回原始数据

将提取的数字特征,转换会原始数据,可以使用 inverse_transform()。

from sklearn import feature_extraction

# 原始数据(字典)
old_data = [
    {'name': "张三", 'age': 18},


## 学习路线:

这个方向初期比较容易入门一些,掌握一些基本技术,拿起各种现成的工具就可以开黑了。不过,要想从脚本小子变成黑客大神,这个方向越往后,需要学习和掌握的东西就会越来越多以下是网络渗透需要学习的内容:  
 ![在这里插入图片描述](https://img-blog.csdnimg.cn/7a04c5d629f1415a9e35662316578e07.png#pic_center)





**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注网络安全)**
![img](https://img-blog.csdnimg.cn/img_convert/7f4b26cd63a728344a8baa89ccbeca32.png)

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

)**
[外链图片转存中...(img-DgaYuMp6-1713469017886)]

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值