fjjkkkkk

6-1 顺序表的删除操作

//删除顺序表第i个位置的元素
int del(SeqList *sq,int i){
    if (i < 1 || i > sq->n ){
        return -1;
    }
    for (int j = i;j < sq->n;j++){
        sq->a[j - 1] = sq->a[j];
    }
    sq->n--;
    return 1;
}

6-2 求链式表的表长

int Length( List L ){
    int num;
    List p = L;
    while (p != NULL){
        num++;
        p = p->Next;
    }
    return num;
}

6-3 递增的整数序列链表的插入

List Insert( List L, ElementType X )
{
    List p, q, r; // 定义三个指针,分别指向当前结点、前一个结点和新结点
    p = L->Next; // p指向第一个数据结点
    q = L; // q指向头结点
    while (p && p->Data < X) // 在链表中寻找插入位置,使得q->Data < X <= p->Data
    {
        q = p; // q指向p的前一个结点
        p = p->Next; // p指向下一个结点
    }
    r = (List)malloc(sizeof(struct Node)); // 为新结点分配空间
    r->Data = X; // 存储数据
    r->Next = p; // 新结点的下一个结点指向p
    q->Next = r; // 前一个结点的下一个结点指向r
    return L; // 返回链表头指针
}

6-4 查找中间结点

Node* find_middle(Node* head)
{
     int count = 0;
     Node *p = head;
      if(p == NULL)
          return p;
      while(p->next != NULL)
      {
          count++;
          p = p->next;
      }
      p = head;
      count = count/2;
      while(count > 0)
      {
            p = p->next;
            count--;
      }
      return p;
}

6-5 求链表的倒数第m个元素

ElementType Find( List L, int m )
{
    List p, q; // 定义两个指针,分别指向前后结点
    p = q = L->Next; // 初始时都指向第一个数据结点
    int i = 0; // 定义一个计数器,记录结点的位置
    while (p) // 当前结点不为空时,循环继续
    {
        if (i >= m) // 如果计数器大于等于m,说明后结点已经到达倒数第m个位置
        {
            q = q->Next; // 后结点向后移动一位
        }
        p = p->Next; // 前结点向后移动一位
        i++; // 计数器加一
    }
    if (i < m) // 如果计数器小于m,说明链表长度不足m,返回错误标志
    {
        return ERROR;
    }
    else // 否则,返回后结点的数据
    {
        return q->Data;
    }
}
6-6 链表逆置

struct ListNode *reverse( struct ListNode *head )
{
    struct ListNode *prev, *curr, *next; // 定义三个指针,分别指向前一个结点、当前结点和下一个结点
    prev = NULL; // 初始时,前一个结点为空
    curr = head; // 初始时,当前结点为头结点
    while (curr) // 当当前结点不为空时,循环继续
    {
        next = curr->next; // 保存下一个结点的地址
        curr->next = prev; // 将当前结点的下一个结点指向前一个结点,实现逆置
        prev = curr; // 前一个结点后移一位
        curr = next; // 当前结点后移一位
    }
    return prev; // 当前结点为空时,前一个结点指向的就是逆置后的链表头,返回其地址
}
6-7 两个有序链表序列的合并

List Merge( List L1, List L2 )
{
    List L, p, q, r;
    L = (List)malloc(sizeof(struct Node)); // 创建一个新的头结点
    L->Next = NULL; // 初始化为空链表
    r = L; // r指向当前的尾结点
    p = L1->Next; // p指向L1的第一个数据结点
    q = L2->Next; // q指向L2的第一个数据结点
    while (p && q) // 当两个链表都有数据时
    {
        if (p->Data <= q->Data) // 如果p的数据小于等于q的数据
        {
            r->Next = p; // 将p接到L的尾部
            r = p; // r指向新的尾结点
            p = p->Next; // p指向下一个结点
        }
        else // 如果p的数据大于q的数据
        {
            r->Next = q; // 将q接到L的尾部
            r = q; // r指向新的尾结点
            q = q->Next; // q指向下一个结点
        }
    }
    if (p) // 如果L1还有剩余的结点
    {
        r->Next = p; // 将L1的剩余部分接到L的尾部
    }
    if (q) // 如果L2还有剩余的结点
    {
        r->Next = q; // 将L2的剩余部分接到L的尾部
    }
    L1->Next = NULL; // 将L1置为空链表
    L2->Next = NULL; // 将L2置为空链表
    return L; // 返回合并后的链表的头指针
}
6-8 另类堆栈

bool Push(Stack S, ElementType X)
{
    if (S->Top == S->MaxSize)//判满条件
    {
        printf("Stack Full\n");
        return false;
    }
    S->Data[S->Top++] = X;
    return true;
}
ElementType Pop(Stack S)
{
    if (S->Top == 0)//判空条件
    {
        printf("Stack Empty\n");
        return ERROR;
    }
    return S->Data[--S->Top];
}

6-9 简单表达式求值

int cal( char a[] ) {
    int num1 = 0, num2 = 0;
    char op;
    int i = 0;
    while(a[i] != '+' && a[i] != '-' && a[i] != '*' && a[i] != '/') {
        num1 = num1 * 10 + (a[i] - '0');
        i++;
    }
    op = a[i];
    i++;
    while(a[i] != '=') {
        num2 = num2 * 10 + (a[i] - '0');
        i++;
    }
    switch(op) {
        case '+': return num1 + num2;
        case '-': return num1 - num2;
        case '*': return num1 * num2;
        case '/': return num1 / num2;
    }
    return 0;
}

6-10 另类循环队列

/* 你的代码将被嵌在这里 */
bool AddQ( Queue Q, ElementType X )
{
    if (Q->Count == Q->MaxSize) // 如果队列已满
    {
        printf("Queue Full\n"); // 输出提示信息
        return false; // 返回false
    }
    else // 如果队列未满
    {
        Position rear = (Q->Front + Q->Count) % Q->MaxSize; // 计算队列的尾指针
        Q->Data[rear] = X; // 将元素X存入队列尾部
        Q->Count++; // 队列中元素个数加一
        return true; // 返回true
    }
}

ElementType DeleteQ( Queue Q )
{
    if (Q->Count == 0) // 如果队列为空
    {
        printf("Queue Empty\n"); // 输出提示信息
        return ERROR; // 返回ERROR
    }
    else // 如果队列非空
    {
        ElementType X = Q->Data[Q->Front]; // 取出队列头部元素
        Q->Front = (Q->Front + 1) % Q->MaxSize; // 队列头指针加一
        Q->Count--; // 队列中元素个数减一
        return X; // 返回出队元素
    }
}

6-11 求二叉树高度

int GetHeight( BinTree BT )
{
    
    if (BT == NULL)
        return 0;
    int leftHeight = GetHeight(BT->Left);
    int rightHeight = GetHeight(BT->Right);
    int height = 1 + (leftHeight > rightHeight ? leftHeight : rightHeight);
    return height;
}

6-12 先序输出叶结点

void PreorderPrintLeaves( BinTree BT )
{
    if (BT == NULL)
        return;
    if (BT->Left == NULL && BT->Right == NULL)
        printf(" %c", BT->Data);
    PreorderPrintLeaves(BT->Left);
    PreorderPrintLeaves(BT->Right);
}

6-14 统计二叉树结点个数

/* 你的代码将被嵌在这里 */
int NodeCount ( BiTree T)
{
    if (T == NULL) // 如果树为空
        return 0; // 返回0
    else // 如果树非空
        return 1 + NodeCount(T->lchild) + NodeCount(T->rchild); // 返回根结点加上左右子树的结点个数之和
}
6-15 统计二叉树度为1的结点个数

int NodeCount( BiTree T){
if(T==NULL) {
    return 0;
    }
   if(T->lchild==NULL&&T->rchild!=NULL||T->rchild==NULL&&T->lchild!=NULL){
    
    return 1+NodeCount(T->lchild)+NodeCount(T->rchild);
}
return NodeCount(T->lchild)+NodeCount(T->rchild);

6-16 求采用邻接矩阵作为存储结构的无向图各顶点的度

void degree(MGraph G){
    for(int i = 0;i<G.vexnum;i++){
        int count = 0;
        printf("%c:",G.vexs[i]);
        for(int j = 0;j<G.vexnum;j++){
            if(G.arcs[j][i]||G.arcs[i][j]) count++;
        }
        printf("%d\n",count);
    }
}

6-17 求采用邻接矩阵作为存储结构的有向图各顶点的入度

void indegree(MGraph G)
{
    for(int i = 0;i<G.vexnum;i++){
        int count = 0;
        printf("%c:",G.vexs[i]);
        for(int j = 0;j<G.vexnum;j++){
            if(G.arcs[j][i]) count++;
        }
        printf("%d\n",count);
    }
}

6-18 邻接矩阵存储图的深度优先遍历

void DFS( MGraph Graph, Vertex V, void (*Visit)(Vertex) ) {
    /* 用访问标记数组Visited,其初值为false */
    Vertex W;
    
    Visit( V ); /* 访问第V个顶点 */
    Visited[V] = true; /* 标记V已访问 */
    
    /* 对V的每个邻接点W */
    for ( W=0; W<Graph->Nv; W++ ) {
        /* 若W是V的邻接点并且未访问过 */
        if ( Graph->G[V][W]!=INFINITY && !Visited[W] )
            DFS( Graph, W, Visit ); /* 则递归访问之 */
    }
}

6-19 图的深度遍历-邻接表实现

void DFS(ALGraph *G, int i)
{
    printf(" %d", i);
    visited[i] = 1;
    struct ArcNode *w;
    for (w = G->vertices[i].firstarc; w; w = w->nextarc)
    {
        if (visited[w->adjvex] == 0)
            DFS(G, w->adjvex);
    }
}

6-20 图的广度遍历-邻接矩阵实现

void BFS(MGraph G,Vertex v){
    int q[1000],front = 0,rear = 0;
    printf(" %d",v);
    visited[v] = 1;
    q[rear++] = v;
    while(front!=rear){
        int u = q[front++];//出队
        for(int w = 0;w<G.vexnum;w++){
            if(G.arcs[u][w]&&!visited[w]){
                printf(" %d",w);
                visited[w] = 1;
                q[rear++] = w;
            }
        }
        
    }
}

6-21 邻接表存储图的广度优先遍历

void BFS ( LGraph Graph, Vertex S, void (*Visit)(Vertex) ){
 
    Visit(S);
    Visited[S]=true;
 
    int a[1000]={0};
    int end=0;
    int begin=0;
 
    a[end++]=S;
    while(begin<end){
 
        PtrToAdjVNode cur = Graph->G[a[begin++]].FirstEdge;
        while(cur){
            if(!Visited[cur->AdjV]){
                Visit(cur->AdjV);
                Visited[cur->AdjV]= true;
                a[end++]=cur->AdjV;
            }
            cur=cur->Next;
        }
    }
    
}

7-1 字符串的冒泡排序

#include <stdio.h>
#include <string.h>

// 交换两个字符串的位置
void swap(char *a, char *b) {
  char temp[11];
  strcpy(temp, a);
  strcpy(a, b);
  strcpy(b, temp);
}

// 冒泡排序法对字符串序列进行排序
void bubble_sort(char arr[][11], int n, int k) {
  int i, j;
  for (i = 0; i < k; i++) {
    for (j = 0; j < n - i - 1; j++) {
      // 如果前一个字符串字典序大于后一个字符串,就交换它们的位置
      if (strcmp(arr[j], arr[j + 1]) > 0) {
        swap(arr[j], arr[j + 1]);
      }
    }
  }
}

int main() {
  int n, k, i;
  char arr[100][11];

  // 读入n和k
  scanf("%d %d", &n, &k);

  // 读入n个字符串
  for (i = 0; i < n; i++) {
    scanf("%s", arr[i]);
  }

  // 对字符串序列进行冒泡排序
  bubble_sort(arr, n, k);

  // 输出扫描完第k遍后的中间结果序列
  for (i = 0; i < n; i++) {
    printf("%s\n", arr[i]);
  }

  return 0;
}

7-3 括号匹配

#include <stdio.h>
#include <string.h>

int main() {
    char str[101];
    int stack[101], top = 0;
    fgets(str, 101, stdin);
    for (int i = 0; i < strlen(str); i++) {
        if (str[i] == '(' || str[i] == '[' || str[i] == '{') {
            stack[top++] = str[i];
        } else if (str[i] == ')' || str[i] == ']' || str[i] == '}') {
            if (top == 0) {
                printf("no\n");
                return 0;
            }
            char match;
            if (str[i] == ')') match = '(';
            if (str[i] == ']') match = '[';
            if (str[i] == '}') match = '{';
            if (stack[--top] != match) {
                printf("no\n");
                return 0;
            }
        }
    }
    if (top == 0) {
        printf("yes\n");
    } else {
        printf("no\n");
    }
    return 0;
}

7-4 表达式求值

 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>

 int main() {
     char expression[21];
     double stack[21];
     int top = -1;
     while (scanf("%s", expression) != EOF) {
         for (int i = 0; i < strlen(expression); i++) {
             if (expression[i] >= '0' && expression[i] <= '9') {
                 stack[++top] = expression[i] - '0';
             } else {
                 double b = stack[top--];
                 double a = stack[top--];
                 switch (expression[i]) {
                     case '+':
                         stack[++top] = a + b;
                         break;
                     case '-':
                         stack[++top] = a - b;
                         break;
                     case '*':
                         stack[++top] = a * b;
                         break;
                     case '/':
                         stack[++top] = a / b;
                         break;
                 }
             }
         }
         printf("%.2f\n", stack[top--]);
     }
     return 0;
 }

7-5 队的基本操作

#include <stdio.h>

#define MAX_SIZE 10

typedef struct {
    int queue[MAX_SIZE];
    int front, rear;
} Queue;

void initialize(Queue *q) {
    q->front = q->rear = 0;
}

int isEmpty(Queue *q) {
    return q->front == q->rear;
}

int isFull(Queue *q) {
    return (q->rear + 1) % MAX_SIZE == q->front;
}

void enqueue(Queue *q, int value) {
    if (!isFull(q)) {
        q->queue[q->rear] = value;
        q->rear = (q->rear + 1) % MAX_SIZE;
    }
}

int dequeue(Queue *q) {
    if (!isEmpty(q)) {
        int value = q->queue[q->front];
        q->front = (q->front + 1) % MAX_SIZE;
        return value;
    }
    return 0;  
}

int main() {
    Queue q;
    initialize(&q);

    int n, operation;
    scanf("%d", &n);

    for (int i = 0; i < n; i++) {
        scanf("%d", &operation);
        if (operation == 0) {
            int value = dequeue(&q);
            if (value == 0) {
                printf("EMPTY ");
            } else {
                printf("%d ", value);
            }
        } else {
            if (!isFull(&q)) {
                enqueue(&q, operation);
            } else {
                printf("FULL ");
            }
        }
    }

    printf("\n");
    while (!isEmpty(&q)) {
        int value = dequeue(&q);
        printf("%d ", value);
    }

    printf("\n");

    return 0;
}

7-6 银行业务队列简单模拟

#include <iostream>
#include <queue>
using namespace std;

int main() {
    int N;
    cin >> N;
    queue<int> A, B;
    for(int i = 0; i < N; i++) {
        int num;
        cin >> num;
        if(num % 2 == 1) A.push(num);
        else B.push(num);
    }
    int i = 0;
    while(!A.empty() || !B.empty()) {
        if(!A.empty()) {
            if (i > 0){
                cout << " ";
            }
            cout << A.front();
            A.pop();
            i++;
        }
        if(!A.empty()) {
            cout << " "<< A.front() ;
            A.pop();
            i++;
        }
        if(!B.empty()) {
                if (i > 0){
                cout << " ";
            }
            cout << B.front();
            B.pop();
            i++;
        }
    }
    return 0;
}

7-7 h0181. 约瑟夫问题

#include <stdio.h>
int josephus(int n, int m) {
    int result = 0;
    for (int i = 2; i <= n; i++) {
        result = (result + m) % i;
    }
    return result + 1;
}

int main() {
    int n, m;
    while (1) {
        scanf("%d %d", &n, &m);
        if (n == 0 && m == 0) {
            break;
        }
        printf("%d\n", josephus(n, m));
    }
    return 0;
}

7-9 还原二叉树

#include <stdio.h>
#include <string.h>

typedef struct node {
    char data;
    struct node *left, *right;
} Node;

Node* build(char* pre, char* in, int len) {
    if (len == 0) return NULL;
    Node* root = (Node*)malloc(sizeof(Node));
    root->data = pre[0];
    int pos = strchr(in, pre[0]) - in;
    root->left = build(pre + 1, in, pos);
    root->right = build(pre + pos + 1, in + pos + 1, len - pos - 1);
    return root;
}

int height(Node* root) {
    if (root == NULL) return 0;
    int leftHeight = height(root->left);
    int rightHeight = height(root->right);
    return (leftHeight > rightHeight ? leftHeight : rightHeight) + 1;
}

int main() {
    int N;
    scanf("%d", &N);
    char pre[N + 1], in[N + 1];
    scanf("%s%s", pre, in);
    Node* root = build(pre, in, N);
    printf("%d\n", height(root));
    return 0;
}

7-10 插入排序

#include <stdio.h>
#define MAXN 100 
void printArray(int arr[], int n) {
    for (int i = 0; i < n; i++) {
        printf("%d", arr[i]); 
        if (i < n - 1) printf(" "); 
    }
    printf("\n"); //输出换行符
}
void insertionSort(int arr[], int n) {
    for (int i = 1; i < n; i++) { 
        int key = arr[i]; 
        int j = i - 1; 
        while (j >= 0 && arr[j] > key) { 
            arr[j + 1] = arr[j]; 
            j--; 
        }
        arr[j + 1] = key; 
        printArray(arr, n); 
    }
}

int main() {
    int n; 
    int arr[MAXN]; 
    scanf("%d", &n); 
    for (int i = 0; i < n; i++) {
        scanf("%d", &arr[i]); 
    }
    insertionSort(arr, n); 
    return 0;
}
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值