- 博客(1)
- 收藏
- 关注
原创 YOLOV1论文以及代码解读
GoogleNetGoogleNet通过Inception模块实现了深而宽的结构,能够捕捉多尺度的特征。在YOLOv1中使用GoogleNet作为特征提取器,可能会提高网络的表达能力,尤其是在处理多尺度目标时。然而,GoogleNet的计算量较大,可能会影响实时性能。ResNetResNet通过残差块的设计,可以构建非常深的网络,同时保持较高的训练效率和性能。在YOLOv1中使用ResNet作为特征提取器,可能会提高网络的深度和精度,同时减少梯度消失的问题。
2024-11-12 20:23:23
1136
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人