自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

志在创建优质博客、通俗易懂、助力大家提高学习效率!

本博客以算法工程师日常工作经验为基础,分享各类算法:NLP、cv、搜广推、机器学习、深度学习、数据分析的共工作项目总结!

  • 博客(124)
  • 资源 (4)
  • 问答 (1)
  • 收藏
  • 关注

原创 【大模型-驯化】成功解决fused_adam.so: undefined symbol: _ZN3c107WarningC1ENS中fused_adam .. [NO] ..[OKAY]问题

大模型-驯化】成功解决fused_adam.so: undefined symbol: _ZN3c107WarningC1ENS中fused_adam … [NO] …[OKAY]问题 本次修炼方法请往下查看     目前大模型的训练大都是是基于deepspeed来进行多卡并行加速,大家在安装deepspeed成功后,在训练大模型是经常会遇到运行的过程中出现训练:💡 2. 问题分析

2024-09-06 16:27:18 963

原创 【大模型-驯化】成功解决deepspeed加速出现:./fused_adam/fused_adam.so: undefined symbol: _ZN3c107WarningC1ENS问题

成功解决qwen中deepspeed出现fused_adam.so问题

2024-09-03 16:26:39 884

原创 【openpyxl-驯化】一文搞懂python是如何将文本、图片写入到execl中的技巧

我们在进行图片的分类等处理过程中,经常需要将图片插入到execl中,并对其进行显示,这个时候我们需要用到openpyxl库来对其进行处理,openpyxl 是一个 Python 库,用于读写 Excel 2010 xlsx/xlsm/xltx/xltm 文件。它提供了丰富的功能,包括创建工作簿、操作工作表、添加图片等。本文将介绍如何使用 openpyxl 在 Excel 工作表中插入文本和图片。openpyxl 是一个功能强大的库,用于操作 Excel 文件。

2024-08-28 14:33:25 1021

原创 【Pyspark-驯化】一文搞懂Pyspark中对json数据处理使用技巧:get_json_object

在处理存储为JSON格式的列时,我们经常需要从嵌套结构中提取特定字段。PySpark提供了get_json_object函数,它可以从JSON字符串中提取出特定的值。这个函数对于处理具有复杂JSON结构的DataFrame非常有用。get_json_object函数是PySpark中处理嵌套JSON数据的有用工具。通过本博客的代码示例,我们学习了如何使用这个函数从复杂的JSON结构中提取所需的字段。希望这篇博客能够帮助你更好地理解get_json_object的用法,并将其应用于处理JSON数据的任务中。

2024-08-12 13:41:14 629

原创 【Pyspark-驯化】一文搞懂Pyspark中表连接的使用技巧

在数据处理和分析中,表连接(Join)是一种常用的操作,用于将两个或多个表中满足特定条件的数据行组合在一起。PySpark提供了多种连接函数,允许用户根据不同的键进行内连接、外连接、左连接和右连接。PySpark中的连接函数是处理和分析数据集的重要工具。通过本博客的代码示例,我们学习了如何使用不同的连接类型和条件来合并数据。希望这篇博客能够帮助你更好地理解PySpark中的连接操作,并将其应用于实际的数据处理任务中。

2024-08-12 13:35:06 1487

原创 【Pyspark-驯化】一文搞懂Pyspark写入hive表的使用技巧

在大数据处理中,经常需要将数据从临时存储转换到持久化存储中。PySpark提供了丰富的API,允许用户轻松地创建Hive表,并将数据从DataFrame或临时表写入。本文将介绍如何使用PySpark创建Hive表,添加列注释,并从临时表中导入数据。本文介绍了如何使用PySpark创建Hive表,为列添加注释,并从临时表中导入数据。通过示例代码,我们展示了创建表、定义数据类型和注释、以及数据导入的完整流程。希望这篇博客能够帮助您更好地理解PySpark与Hive的集成,并应用于实际的数据存储和管理任务中。

2024-08-10 11:07:33 678

原创 【Pyspark-驯化】一文搞懂Pyspark修改hive表描述以及增加列使用技巧

在Hive中管理表结构是一项常见任务,尤其是在数据仓库环境中。使用PySpark,我们可以方便地对Hive表进行操作,包括增加新列和为列添加注释。这些操作有助于优化数据模型和提高数据的可读性。通过PySpark,我们可以方便地对Hive表进行结构调整,包括增加新列和为列添加注释。这些操作有助于维护数据的组织结构和提高数据的可用性。本博客提供了如何使用PySpark执行这些操作的示例,希望能够帮助您更好地管理和优化您的Hive表结构。

2024-08-10 10:44:31 537

原创 【Pyspark-驯化】一文搞懂Pyspark中过滤数据when和otherwise函数的使用技巧

在PySpark中,when和otherwise是pyspark.sql.functions模块中的函数,它们通常一起使用来实现条件数据转换。这种用法类似于传统编程语言中的if-else语句,允许用户根据条件创建新列或转换现有列的值。when和otherwise在PySpark中提供了一种灵活的条件数据转换方式,类似于编程中的if-else语句。通过本博客的代码示例,我们学习了如何使用这两个函数进行条件数据转换,包括嵌套使用和结合多个条件。

2024-08-09 15:47:02 1047

原创 【Pyspark-驯化】一文搞懂Pyspark中dropDuplicates和sort的使用技巧

在处理大规模数据集时,经常需要对数据进行清洗和排序。PySpark提供了dropDuplicates和sort方法,分别用于删除重复的行和对数据进行排序。这些操作对于提高数据质量、优化查询性能和准备数据进行分析至关重要。dropDuplicates和sort是PySpark中两个非常有用的函数,它们允许用户在DataFrame中删除重复的行和对数据进行排序。通过本博客的代码示例,我们学习了如何使用这两个函数进行数据清洗和排序操作。

2024-08-09 15:38:16 889

原创 【Pyspark-驯化】一文搞懂Pyspark中过滤数据filter和when函数的使用技巧

在PySpark中,when和filter是两个非常有用的函数,它们用于在DataFrame中进行条件筛选和数据转换。when通常与select和withColumn一起使用,用于根据条件创建新的列或转换数据。filter则用于根据条件筛选出满足特定条件的行。PySpark中的when和filter是两个强大的函数,它们允许用户在DataFrame中进行条件筛选和数据转换。通过本博客的代码示例,我们学习了如何使用when进行条件筛选和数据转换,以及如何使用filter进行条件筛选。

2024-08-08 13:37:43 780

原创 【Pyspark-驯化】一文搞懂Pyspark中对空值的处理dropna函数的使用技巧

在数据分析和机器学习中,处理缺失数据是一项常见且重要的任务。PySpark提供了dropna方法,它允许用户从DataFrame中删除包含缺失值的行或列,从而简化数据集并提高模型的性能。withColumnRenamed是PySpark中一个非常实用的功能,它允许用户轻松地重命名DataFrame中的列。通过本博客的代码示例,我们学习了如何使用withColumnRenamed进行单个列和多个列的重命名操作,以及如何将其与其他DataFrame操作结合使用。

2024-08-08 13:36:25 634

原创 【Pyspark-驯化】一文搞懂Pyspark中的withColumnRenamed函数的使用技巧

在数据处理过程中,经常需要对列名进行修改以符合特定的命名规范或为了提高可读性。PySpark提供了withColumnRenamed方法,这是一种便捷的方式来重命名DataFrame中的列。withColumnRenamed是PySpark中一个非常实用的功能,它允许用户轻松地重命名DataFrame中的列。通过本博客的代码示例,我们学习了如何使用withColumnRenamed进行单个列和多个列的重命名操作,以及如何将其与其他DataFrame操作结合使用。

2024-08-07 13:20:44 914

原创 【Pyspark-驯化】一文搞懂Pyspark中Dataframe的基本操作介绍

一般目前对于pyspark进行操作,基本都是处理一些log数据,这个时候一般通过将数据转换为dataframe进行操作会比较常用,对于算法工程师来说,目前我在的公司基本数据以及被进行ETL操作了,基本是结构化的数据,不需要我们通过scala进行数据转换了,因此基本都是对dataframe的数据进行数据清洗、特征提取。PySpark的DataFrame提供了一种高效、易用的方式来处理结构化数据。

2024-08-07 13:11:29 1125

原创 【Pyspark-驯化】一文搞懂Pyspark中的RDD的使用技巧

spark的运行基本由两部分组成:Transformnation(转换)和action,其中第一部分这类方法仅仅是定义逻辑,并不会立即执行,即lazy特性。目的是将一个RDD转为新的RDD。action不会产生新的RDD,而是直接运行,得到我们想要的结果RDD是PySpark中的核心数据结构,提供了丰富的操作来处理大规模数据集。通过本博客的代码示例,我们学习了如何创建RDD、执行转换和行动操作,以及使用高级功能如Pair RDD和聚合操作。

2024-08-06 14:24:34 614

原创 【Pyspark-驯化】一文搞懂PYspark中读取各类数据格式技巧:parquet、hdfs、json

hdfs、hive、本地CSVJSONParquetHive表JDBC等。通常我们将数据保存为parquet格式,这样可以将数据的存放大小缩小一个量级。PySpark提供了多种方式来读取不同类型的数据源。通过SparkSession,我们可以轻松地读取CSV、JSON、Parquet等格式的数据,并进行进一步的处理和分析。希望这篇博客能够帮助你更好地理解如何在PySpark中读取数据,并将其应用于处理大规模数据集。

2024-08-06 14:22:39 841

原创 【Pyspark-驯化】一文搞定spark的代码执行原理和使用技巧

Spark Core:包含Spark的基本功能;尤其是定义RDD的API、操作以及这两者上的动作。其他Spark的库都是构建在RDD和Spark Core之上的。Spark SQL:提供通过Apache Hive的SQL变体Hive查询语言(HiveQL)与Spark进行交互的API。每个数据库表被当做一个RDD,Spark SQL查询被转换为Spark操作。

2024-08-05 14:09:50 1139

原创 【搜索策略-驯化】一文彻底讲明白搜索系统中的策略算法:query解析、召回、排序

在AI的发展过程中,搜索系统应该是第一个成功运用ai的业务,随着各大公司的竞争,在搜索系统的技术这块,国内主要看百度,国外看谷歌,二者由于处理的数据的形式(中文、英文)如上图所示的用户在搜索框里面搜索的词,统称为query,对于搜索系统来说,最终给用户展示什么样的结果都需要根据query为基础,因此,query的理解和解析算是搜索系统的基石,如果query解析做的不好,整体搜索系统的结果上限不高。

2024-08-05 14:03:41 1801

原创 【Hadoop-驯化】一文学会hadoop访问hdfs中常用命令使用技巧

Hadoop分布式文件系统(HDFS)是一个分布式文件系统,允许跨多个机器存储和处理大量数据。HDFS的命令行工具hdfs提供了多种命令,用于文件和目录的管理、访问权限的设置以及数据的复制和恢复等。Hadoop的HDFS命令行工具提供了丰富的功能,用于管理分布式文件系统中的文件和目录。通过本博客的代码示例,我们学习了如何使用这些命令来执行基本和高级的文件操作。希望这篇博客能够帮助你更好地理解Hadoop HDFS命令的用法,提高你在Hadoop集群中管理数据的效率。

2024-08-04 11:32:19 747

原创 【Hadoop-驯化】一文教你轻松搞懂hadoop的基本原理

hadoop是一个大规模的集群处理框架,可以用来对大规模的数据进行并行处理,用来处理大规模的日志信息很方便,目前用的比较多的基本就是hdfs和MR计算框架了,Hadoop的生态架构如下所示:目前对于上述的生态组件的话,hive,hdfs,hbase以及flume和sqoop用的比较多,机器学习库mahout现在基本不用了,但是随着spark的得绝对优势,目前hadoop的使用基本都很少了,对于非大数据开发工程师来说,基本了解上层的数据挖掘、分析的使用即可,平时基本接触不到底层的原理。

2024-08-03 11:10:01 1017

原创 【Plotly-驯化】一文画出漂亮的流量漏斗图:plotly.funnel函数使用技巧

流量漏斗图是一种用于展示用户在完成某个目标的过程中,各个阶段的转化率和流失率的图表。它可以帮助我们理解用户行为,并识别转化过程中的瓶颈。Plotly是一个强大的图表库,它能够创建交互式的流量漏斗图,使得数据探索更加直观和动态。流量漏斗图的核心在于计算每个阶段的用户转化率和流失率。转化率阶段的离开用户数阶段的进入用户数×100转化率=( 阶段的离开用户数/阶段的进入用户数)×100%转化率阶段的离开用户数阶段的进入用户数×100流失率100流失率=100%−转化率流失率100。

2024-08-03 11:04:57 951

原创 【Python正则-驯化】最全面干净的通过python将文本中的异常符号进行处理技巧

string = "123我123456abcdefgABCVDFF?/ ,。,.:;:''';Python的re模块为处理文本提供了强大的正则表达式功能。通过本博客的代码示例,我们学习了如何使用正则表达式进行搜索、查找、替换和分割操作。希望这篇博客能够帮助你更好地利用正则表达式来清洗和处理文本数据。

2024-08-01 15:49:54 802

原创 【Python正则-驯化】一文学会通过Python中的正则表达式提取文本中的日期

在处理文本数据时,经常需要从大量非结构化数据中提取日期信息。正则表达式提供了一种强大的文本匹配工具,可以用来识别和提取符合特定格式的日期字符串,例如 MM/DD/YYYY。\b:单词边界,确保我们匹配的是独立的日期字符串。(0[1-9]|1[0-2]):匹配月份,可以是 01 到 09 或 10 到 12。/:字面意义上的斜杠。(0[1-9]|[12][0-9]|3[01]):匹配日期,可以是 01 到 09,10 到 29,或者 30 和 31。/:字面意义上的斜杠。

2024-08-01 13:20:31 412

原创 【Python正则-驯化】一文学会通过Python中的正则表达式提取文本中的网址

在数据验证和文本处理中,经常需要验证输入的网址是否符合标准格式。正则表达式是一种强大的工具,用于匹配字符串中的特定模式。本博客将介绍一个用于验证网址的正则表达式,并展示如何在Python中使用它。协议+域名+后缀模版^(((http|https|ftp):\/\/)?\-]*))*$的构成如下:^:匹配字符串的开始。:匹配协议(http, https, ftp),可能跟一个://,出现0次或1次。([[a-zA-Z0-9]\-\.])+:匹配域名部分,允许字母、数字、短划线和点。

2024-07-31 13:24:45 842

原创 【Python正则-驯化】一文学会通过Python中的正则表达式提取文本数据中的电话号码:re

正则表达式是处理字符串匹配的强大工具,在Python中,我们使用re模块来实现。电话号码和电话代码的匹配是常见的应用场景之一。本文将介绍如何使用正则表达式来匹配电话号码和电话代码。正则表达式^+?^:匹配字符串的开始。:匹配加号字符,出现0次或1次。[\d\s]:匹配数字或空格。{3,}:前面的模式至少出现3次。$:匹配字符串的结束。正则表达式^+?[\d\s]+(?=\d{10,}$)用于匹配电话代码,解释如下:^+?:匹配加号字符,出现0次或1次。

2024-07-31 13:22:48 823

原创 【flash attention安装】成功解决flash attention安装: undefined symbol: _ZN2at4_ops9_pad_enum4callERKNS_6Tensor

在进行大模型训练时,我们通过为了解决内存采用策略来优化模型的性能,具体flash attention策略的原理可以自行去看论文,在实际的安装过程中坑太多了,最为经典的坑就是安装成功但是报各种各样的问题,最为经典的模型为目前最为火的模型为intervl看晚上很多的人说需要降低版本,因此,最后将版本降到2.1.0版本,至于高版本可不可以这个具体得看了,反正我调通了就没去试了。在暗疮flash-attn中常见。

2024-07-30 20:02:38 2281

原创 【Plotly-驯化】一文教您画出Plotly中动态可视化饼图:pie技巧

饼图是一种用于展示数据占比的图表,通过将圆分成多个扇形,每个扇形的角度和面积表示数据的比例。Plotly是一个流行的图表库,它能够创建交互式的饼图,允许用户探索数据的分布。饼图的每个扇形由中心角决定,中心角的大小与数据值成比例。σvn∗360σnv​∗360Plotly的饼图为展示数据占比提供了一种直观且交互性强的方式。通过本博客的代码示例,我们学习了如何使用Plotly绘制饼图,并定制图表的样式和布局。希望这篇博客能够帮助你更好地利用饼图进行数据可视化,使你的数据展示更加生动和有趣。

2024-07-30 11:06:55 851

原创 【正则表达式-驯化】Python中网页提取神器使用正则表达式以及基础语法介绍

正则表达式(Regular Expression,简称Regex)是一种用于匹配字符串中字符组合的模式。在Python中,正则表达式通过re模块提供,它是一个用于处理字符串的强大工具,可以用于搜索、替换、分割和验证文本格式等任务。元字符描述匹配行的开始匹配行的结束匹配除换行符以外的任意字符。[ ]字符类,匹配方括号中包含的任意字符,[amk] 匹配 ‘a’,‘m’或’k’[^ ]不在[]中的字符:[^abc] 匹配除了a,b,c之外的字符。匹配前面的子表达式零次或多次。

2024-07-30 11:01:05 925

原创 【Git-驯化】一文学会git中对代码进行存储操作:git stash技巧

在Git中,stash是一个用于临时存储当前工作目录中的更改,让工作区回到干净状态的功能。当你需要切换到另一个分支或者开始新的工作,但又不想立即提交当前的更改时,stash就显得非常有用。将工作目录(包括已跟踪和未跟踪文件)的更改保存到一个栈上。清空工作目录,撤销所有未提交的更改。git stash是Git中一个非常实用的功能,它允许你临时存储工作目录中的更改,以便快速切换到其他分支或开始新的工作。通过本博客的代码示例,我们学习了如何使用stash来存储、列出、应用和删除更改。

2024-07-29 14:18:39 840

原创 【Sklearn-驯化】一文搞懂很难的条件随机场系列算法:hmm、crf以及实践

判别式模型举例:要确定一个羊是山羊还是绵羊,用判别模型的方法是从历史数据中学习到模型,然后通过提取这只羊的特征来预测出这只羊是山羊的概率,是绵羊的概率。生成式模型举例:利用生成模型是根据山羊的特征首先学习出一个山羊的模型,然后根据绵羊的特征学习出一个绵羊的模型,然后从这只羊中提取特征,放到山羊模型中看概率是多少,在放到绵羊模型中看概率是多少,哪个大就是哪个。假设你现在有一个分类问题,x是特征,y是类标记。用生成模型学习一个联合概率分布P(x,y),而用判别模型学习一个条件概率分布P(y|x)

2024-07-29 14:15:17 1199

原创 【Plotly-驯化】一文教你学会画最美动态可视化的热力图:heatmap技巧

热力图是一种通过颜色变化展示数据矩阵中数值大小的图表,常用于展示变量间的相关性或数据分布模式。Plotly是一个交互式图表库,它能够创建美观且功能丰富的热力图,允许用户通过悬停查看具体数值,缩放图表等。颜色映射:数据值映射到颜色空间,通常使用渐变色来表示数值的大小。矩阵布局:数据以矩阵形式排列,每个单元格的数值通过颜色深浅展示。Plotly的热力图是探索和展示变量间关系的有力工具。通过本博客的代码示例,我们学习了如何使用Plotly绘制热力图,并定制图表的样式和布局。

2024-07-27 12:20:52 1120

原创 【Git-驯化】一文搞懂git中代码冲突的解决方案大全

在Git的协作流程中,分支冲突是不可避免的。当多个开发者在不同的分支上工作,且这些分支基于不同的提交历史时,合并操作可能会产生冲突。解决这些冲突是确保代码库健康和项目进度的关键步骤。Git中的分支冲突是协作开发中常见的问题,但通过正确的步骤和工具,你可以有效地解决它们。通过本博客的代码示例,我们学习了如何拉取最新代码、合并远程分支、解决冲突、添加和提交更改,以及推送更改到远程仓库。希望这篇博客能够帮助你更好地理解和解决Git中的分支冲突。

2024-07-27 12:17:52 877

原创 【Plotly-驯化】一文教你通过plotly画出动态可视化多变量分析:create_scatterplotmatrix

是 Plotly 中的一个函数,用于创建散点图矩阵,它允许用户在一个图表中可视化数据集中多个变量之间的两两关系。这对于初步的数据探索和理解变量间的相关性非常有用。散点图矩阵背后的数学原理是简单的:对于每一对变量,它绘制一个散点图,其中一变量作为 x 轴,另一变量作为 y 轴。没有特定的公式推导,但是理解散点图中的相关性、趋势和异常值对于分析是有帮助的。Plotly 的 create_scatterplotmatrix 函数是一个强大的工具,用于快速探索多个变量之间的关系。

2024-07-26 13:49:47 744

原创 【Git-驯化】一文搞懂git中rm命令的使用技巧

在Git中,文件的添加、修改和删除是版本控制的基本操作。git rm命令用于从Git仓库中删除文件,而git rm -r --cached .则是一个特殊的组合命令,用于撤销之前已经添加到仓库中的文件或目录。git rm命令是Git中用于删除文件的工具,而git rm -r --cached .则是一种撤销更改的高级用法。在使用这些命令时,需要确保理解它们的影响,并采取适当的预防措施。通过本博客的介绍和代码示例,我们学习了如何安全地删除文件和撤销更改。

2024-07-26 13:46:31 750

原创 【Plotly-箱型图】一文搭建python中画出最美箱型图Boxplot用法技巧

箱型图(Boxplot)是一种用于展示一组数据分布特征的统计图表,它能够提供数据的最小值、第一四分位数(Q1)、中位数(Q2)、第三四分位数(Q3)和最大值的摘要信息,并且可以直观地识别出数据中的异常值。Plotly是一个强大的图表库,它可以创建交互式的箱型图,增强了数据探索的能力。最小值:数据集中的最小非异常值。第一四分位数(Q1):数据集中25%位置的值。中位数(Q2,Median):数据集中50%位置的值。第三四分位数(Q3):数据集中75%位置的值。最大值:数据集中的最大非异常值。

2024-07-25 13:56:53 871

原创 【Git-驯化】一文搞懂git中代码回测reset详细使用方法

在Git中,reset命令是一个强大的工具,它允许开发者撤销本地更改、回滚到特定的提交,或者重新设置当前分支的HEAD。使用reset,你可以控制你的代码历史,丢弃未提交的更改,或者重新组织提交。git reset是Git中一个非常有用的命令,它提供了对版本历史的精细控制。通过本博客的代码示例,我们学习了如何使用reset来撤销更改、回滚提交,以及如何根据需要选择不同的重置模式。希望这篇博客能够帮助你更好地掌握Git的reset命令,使你能够更自信地管理你的代码历史。

2024-07-25 13:54:03 1107

原创 【Git-驯化】一文讲解git中查看日志git log使用技巧

在Git中,日志处理是一个重要的功能,它允许开发者查看项目的提交历史和变更。git log 是最常用的命令之一,用于显示提交日志。git log 是 Git 中一个强大的命令,用于查看项目的提交历史。通过不同的选项和参数,你可以定制输出格式,查看特定提交或文件的变更。虽然 git relog 不是一个标准的 Git 命令,但探索 git log 的各种用法可以帮助你更好地理解和利用 Git 的日志处理功能。希望这篇博客能够帮助你更有效地使用 git log 命令。

2024-07-24 13:56:00 1472

原创 【Plotly-柱状图】一文搞懂plotly中柱状图bar用法技巧

柱状图是一种常用的数据可视化手段,用于展示不同类别的数据对比。Plotly是一个强大的图表库,它可以创建交互式的柱状图,允许用户通过悬停、点击等操作来探索数据。Plotly的柱状图为数据的可视化提供了一种直观且交互性强的方式。通过本博客的代码示例,我们学习了如何使用Plotly绘制柱状图,并定制图表的样式和布局。希望这篇博客能够帮助你更好地利用Plotly进行数据可视化,使你的数据展示更加生动和有趣。

2024-07-24 13:54:33 768

原创 【Plotly-折线图】一文搭建python中画出最美折线图plotly.iplot用法技巧

折线图是数据可视化中用于展示数据随时间或有序类别变化趋势的经典图表类型。Plotly是一个交互式图表库,它能够创建丰富、动态且高度可定制的折线图,为用户提供了探索数据的全新方式。Plotly提供了一种现代且交互式的方式来创建折线图,它不仅能够展示数据的趋势,还能够提供丰富的用户交互体验。通过本博客的代码示例,我们学习了如何使用Plotly绘制折线图,并定制图表的样式和布局。希望这篇博客能够帮助你更好地利用Plotly进行动态数据可视化。

2024-07-23 11:10:20 1237

原创 【Git-常用命令】一文搞懂学会git的常用命令以及使用技巧

git个人的定义将其分为:编辑区,缓存区,远方仓库,可以方便的对各种版本进行代码控制,还有就是要理解分支的概念(就是copy一个master出来,在上面先进行修改,在将修改的东西和本地master进行合并,然后再将其与远程仓库的master一起合并,下面介绍一些常用的git命令的使用方法通过本博客的介绍和代码示例,你现在应该能够理解Git中分支管理的基本流程。从创建分支到合并更改,再到删除分支,这些步骤是Git协作流程中的关键环节。希望这篇博客能够帮助你更有效地使用Git进行版本控制和团队协作。

2024-07-23 11:04:54 1024

原创 【Plotly-环境搭建】一文搞懂python最美画图工具plotly环境搭建

Plotly 是一个交互式的数据可视化工具,在数据科学和数据可视化领域得到了广泛的应用。它提供了丰富的绘图类型和高度可定制的图表,可以用于创建漂亮的、交互式的数据可视化图形。Plotly 可以通过 Python、R、JavaScript 等多种编程语言进行使用,并且提供了各种形式的 API、SDK 和工具包。其中,Plotly Python 是 Plotly 提供的一个 Python 库,它可以帮助开发者在 Python 环境中进行数据处理和数据可视化。

2024-07-22 11:15:42 927

python中画图工具seaborn、plotly总结

该文档针对想要通过python进行可视化的学生、数据分析工程师的画图工具进行全是总结,具体的内容包括如下所示: 1. 对python中多个画图工具进行全面的对比分析 2. 对seaborn中各种类型的画图方法进行对比和使用技巧以及案例的代码教程 3. 对目前最美的画图工具plotly的使用方法以及环境的搭建进行系统全面的解析 4. 对整体画图代码进行结构化的教学撰写 整体的文档内容如下所示: 4、总结Maplotlib工具1. 基本介绍2. 画图流程3. 高阶用法Pandas画图1、基本介绍 2、画图实践 3、高阶用法Seaborn介绍 1、基本介绍 2、使用方法2.1 环境安装绘制基本图表2.2 主题设置 3、注意事项4、总结Seabron-箱线图boxplot1. 基本介绍 2. 原理介绍3. 画图实践3.1 数据准备3.2 单维画图3.3 分组画图4 高阶用法 注意事项总结Seabron-violinplot小提琴图1. 基本介绍 原理介绍 3. 画图实践3.1 数

2024-07-27

机器学习-sklearn-项目学习大全

1. sklearn中数据处理、特征提取、模型迭代使用方法总结 2. 机器学习各个算法的sklearn项目使用方法总结

2024-06-29

pandas使用工作技能总结

pandas中工作的一些使用总结,本文系统的总结了pandas的使用心得和学习心得,资料内容简单易读

2024-06-17

pandas数据骚操作总结

pandas在工作中的使用总结,以及使用pandas进行特征工程比较常用的方法总结。

2019-02-17

python处理pandas读取文件名有中文报错问题解决方法

python处理pandas读取文件名有中文报错问题解决方法,

2018-05-17

windows10下已经编译好了的LightGBM安装包

亲自已测可以直接使用安装的LightGBM包,希望帮助不想安装vs的小伙伴们安装python包/

2018-05-16

现在就职了,分享去年各大互联网公司的机器学习与数据挖掘面积以及总结,望各位都能找个好工作。

现在就职了,分享去年各大互联网公司的机器学习与数据挖掘面积以及总结,望各位都能找个好工作。

2018-05-16

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除