文末有福利领取哦~
👉一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
👉二、Python必备开发工具
👉三、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉 四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(文末领读者福利)
👉五、Python练习题
检查学习结果。
👉六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
👉因篇幅有限,仅展示部分资料,这份完整版的Python全套学习资料已经上传
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
默认参数
复杂度
想说的话
二分查找
====
模板
–
def binary_search(nums, target):
二分查找前提是数据是要有序的
nums.sort()
左指针指向第一个元素
left = 0
右指针指向最后一个元素
right = len(nums) - 1
注意是小于等于
while left <= right:
//2表示整除2向下取整
mid = left + (right - left) // 2
if nums[mid] == target:
return mid
如果大于目标右指针往左移 这样中值会变小
elif nums[mid] > target:
right = mid - 1
小于目标左指针往右移
else:
left = mid + 1
没找到返回-1
return -1
思路
–
二分查找必须要在数据有序的条件下进行。左右指针分别位于数组左右边界,中值处于左右指针中点的位置,我们查找元素是依靠中值查找。决定中值的唯一条件就是左右指针的值。当中值与目标值不相等时,根据中值与目标值的大小判断进行移动左指针或右指针缩减范围。重复上述操作,直到找到元素或左右指针重合为止。
重合:当右指针为目标值时,左指针必须与右指针重合中值才能与目标值匹配,因此while条件必须是小于等于。
复杂度
时间复杂度:while循环的次数 -> O (log n)
空间复杂度:仅存在临时辅助变量left,right,mid -> O(1)
冒泡排序
====
模板
–
从小到大排序
def bubble_sort(nums):
重复N-1次即可完成全部排序
for i in range(1, len(nums)):
每进行一次循环都交换出一个最大的数排在后面
因为最后面的数已经排好序了,所以不用全部遍历比较
i不从0开始是防止j+1越界
for j in range(len(nums)-i):
如果前者值大于后者,那么交换他两的值
if nums[j] > nums[j+1]:
nums[j], nums[j+1] = nums[j+1], nums[j]
思路
–
每次大循环可以交换出一个最大值,进行N-1次交换即可完成排序。(如:若列表只有2个元素,那么进行2-1次交换即可完成排序。),而在小循环中,不断将前后元素相比较交换出更大的元素放在后面。小循环可以根据大循环的次数逐步缩小比较范围,因为后面元素已经排好序了,越靠后越大。
复杂度
时间复杂度:如果一开始就是正序一遍过的话复杂度是O(n),如果一开始是反序(最坏情况)复杂度是O()),综上,总体时间复杂度 -> O())
空间复杂度:仅存在临时辅助变量i,j -> O(1)
快速排序
====
模板
–
def quick_sort(nums, start, end):
递归结束条件
if start >= end:
return
生成左右指针
left = start
right = end
生成一个参考点,将小于中心点的值放在左边,大于中心点的值放在右边
pivot = nums[right]
while left < right:
因为参考点在右边所以先从左指针开始寻找比参考点大的元素放在右侧右指针所指位置
while left < right and nums[left] <= pivot: # 如果想要倒序排序,将此处的<=,改成>=
left += 1
将左指针指向的元素赋值给右指针指向的位置,此时有两种情况,
1.左右指针重合left=right,此时赋值与否元素值都不会改变
2.找出了大于参考点值的元素,将其赋值给右指针指向的位置
nums[right] = nums[left]
移动右指针寻找比参考点小的元素
while left < right and nums[right] >= pivot: # 如果想要倒序排序,将此处的<=,改成>=,两处修改完后即为倒序排序
right -= 1
nums[left] = nums[right]
跳出循环后,左右指针必定指向同一位置 然后将参考点放入两指针重合处
nums[left] = pivot
以相同方法继续排序支点左右两边元素
quick_sort(nums, start, left-1)
quick_sort(nums, left+1, end)
简介
最后
🍅 硬核资料:关注即可领取PPT模板、简历模板、行业经典书籍PDF。
🍅 技术互助:技术群大佬指点迷津,你的问题可能不是问题,求资源在群里喊一声。
🍅 面试题库:由技术群里的小伙伴们共同投稿,热乎的大厂面试真题,持续更新中。
🍅 知识体系:含编程语言、算法、大数据生态圈组件(Mysql、Hive、Spark、Flink)、数据仓库、Python、前端等等。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!