高等数学下·A2(预习版)章三-多元函数积分学

本文详细介绍了二重积分的基础概念、计算方法(直角坐标系和极坐标系),包括切片选择、积分顺序及区域确定。随后扩展到三重积分,探讨了直角坐标系和柱面坐标系的计算。文章强调了利用对称性、性质简化计算的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

看前提示:

篇幅较长,建议准备好草稿纸和笔还有水,边学边算,高数开始难起来了 (笔者也是预习得很疲惫RvR)

引语:

本章内容主要为多重(chóng)积分,在高数上中我们学过二阶三阶甚至高阶导数,现在我们即将学习二重以及三重积分,这俩在生活中应用比较多,再往上的四重五重积分就不是我们本科阶段要研究的内容,但是感兴趣的同学可以自己去搜索学习~

二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积

一、二重积分的基本计算

首先,二重积分形状长这样

∫∫ 符号:二重积分

f(x,y):被积二元函数

dɚ=dxdy

下面的D:积分区域,类似曲顶柱体的底面面积区域

积分结果:曲顶柱体的体积

方法:

1.直角坐标系计算二重积分

01图形:画出积分区域D的图形(注意:不是被积函数f(x,y)的)

02选坐标系:直角

03切片方向选择:看那个方向不是分段函数就选哪个,如果是切分x方向发现有分段函数,则改为切分y,如左下图,建议选择y型切法;例题这种,选哪个都行,我们先选择x型

x型:先积y再积x

y型:先积x再积y

选哪种切法就最后积哪个,切分方向影响积分顺序,积分顺序影响计算难度

04确定积分元素上下限:

现在选择x型,则先找y的上下限

沿y轴正方向看,y的下限为y=0这条线,上限为y=2-x

沿x轴正方向看,x的下限为0,上限为2

小方法:先积的元素上下限用后积的元素的函数表示,如果下限为0则写0;后积的函数上下限直接读图,写成纯数字

05列式计算

把积分拆开,按从右往左的顺序积分

注意积分元素,先积y则把式子里的x当作常数,求解关于y的定积分

​下面是整个计算过程

练习一下,答案为333/20

2.极坐标系计算二重积分

极坐标系和直角坐标系的元素转换:(是的,要多做一步转换才能使用五步法)

ρ上下限:看圆的半径(0->半径)或者圆环大小径(小径->大径)

θ上下限:逆时针看角度上下限,起始位置为下限,结束位置为上限(角度读法,一圈为2π,45°为π/4)

积分顺序:先积ρ再积θ(固定的)

其他的按照五步法来计算即可

答案为:π(没算对再多算几遍√)

练习一下,答案为52π/3

二、二重积分的进阶计算

1.交换积分次序

1)直接考交换

交换积分次序,实际上是需要把x型和y型互换,原来为x型则改成y型,反之亦然

不需要算出结果,只要把变换后的式子写出来即可

方法:

以下为例题解题步骤:

01找函数

根据上下限找到积分元素之间的关系

02画图:画出积分区域D的图形

03使用切片法重新切

04:列式写结果

2)被积函数不好算

观察(瞪眼法)发现:xe^xy先对y求定积分好算得多,然后想到交换积分次序

之后沿用上面的步骤计算一下结果吧0v0

答案为:

2.积分区域对称性解二重积分

1)关于坐标轴对称

观察(瞪眼法)发现:

1°被积函数很复杂

2°积分区域关于坐标轴对称

积分的奇偶对称性

记忆口诀:

轴对称,看奇偶(看D图是否存在轴对称)

x轴看y,y轴看x(D图关于x轴对称,则代入(x,y)和(x,-y)两个点进被积函数

奇为0,偶成倍(若被积函数为奇函数,则积分结果为0)

2)关于y=x对称

积分的轮换对称性

x和y可以互换,即把所求转化成多元二重积分,再进行计算(就可以摆脱硬算带来的三角函数了)

这是硬算:(不太喜欢算这种定积分)

三、三重积分

这是三重积分的长相

∫∫∫ 符号:三重积分

f(x,y,z):被积函数(如果是密度函数,则积分结果为质量)

dxdydz:被积元素,有时候也写作 dv

下面的Ω:积分区域,立体图形

积分结果:立体图形的质量

方法:投影五步法

先求一次z的定积分,再求一次xy的二重积分

1.直角坐标系计算三重积分

01画立体图和xoy面的投影图(俯视图)

02选坐标系:

03确定z的上下限:

把z表示成关于xy的函数

04确定xy的上下限:这里和前面的二重积分求法相同,笔者不过多赘述

05列式计算:三重转化为三次积分

答案为1/12

2.柱面坐标系计算三重积分

三重积分的柱面坐标系相当于二重积分的极坐标系

换元方法:

先积z再积ρ最后积θ

沿用上面的步骤自己计算一下结果吧0v0

列式计算,结果为32π/3

练习一下:

答案为π/2(^v^√)

3.球面坐标系计算三重积分*(这个是拓展部分,不细讲,不考)

这是直角坐标系和球面坐标系的转换

以下为完整步骤:

4.三重积分的进阶算法

观察:不能硬算,需要找捷径(找合适的性质进行“消消乐”)

以下为解题过程:

总结:

考试遇到复杂的被积函数,先考虑是否有对称,能不能用性质简便计算,再看交换会不会好算一点,最后选择硬算,这个思考过程并不费时间,“三思而后行”,在练多几道题后,相信我们都会熟能生巧1v1

本章还涉及第一类曲面积分(对面积的曲面积分),也叫数量值函数的曲面积分,由于和下一章的两类曲面积分相合,笔者决定放在另一篇博文《章四-向量值函数的积分与场论》里面讲述,欢迎大家浏览

以上为笔者预习成果,如有不妥或指导之意,感谢各位评论和私聊~

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值