👨🎓个人主页:研学社的博客
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
空中无人机(UAV)长期以来一直被用作移动网络中的网络处理器,但它们现在被用作移动边缘计算(MEC)中的移动服务器。由于它们的灵活性、可移植性、强大的视线通信联系以及低成本、可改变的使用,它们在研究和商业应用中变得更加流行。广泛的民用服务现在可能因其基本特性而得到支持,包括运输和工业监测、农业以及森林火灾和无线服务。本项目研究了基于无人机的移动边缘计算网络,其中无人机(UAV)进行移动终端用户提供的计算。
基于无人机的移动边缘计算网络研究文档
一、引言
随着物联网和5G技术的快速发展,基于无人机的移动边缘计算网络逐渐成为研究热点。无人机因其灵活性、可移植性和强大的通信能力,成为移动边缘计算中的理想移动服务器。本文旨在探讨基于无人机的移动边缘计算网络的基本概念、关键技术、应用场景及未来发展趋势。
二、基本概念
- 无人机(UAV):无人机是一种无人驾驶的飞行器,能够执行各种任务,如航拍、运输、监测等。在移动边缘计算网络中,无人机被用作移动服务器,为地面用户提供计算服务。
- 移动边缘计算(MEC):移动边缘计算是一种分布式计算架构,将计算和数据存储资源部署在网络边缘,以缩短数据传输距离,降低时延,提高服务质量。
- 基于无人机的移动边缘计算网络:该网络利用无人机作为移动服务器,通过无线通信技术为地面用户提供计算、存储和通信服务。
三、关键技术
- 无人机飞行控制技术:无人机需要具备稳定的飞行控制能力,以确保在复杂环境中稳定飞行,并为用户提供持续的计算服务。
- 无线通信技术:无人机与地面用户之间的通信需要高效、稳定的无线通信技术,如5G、Wi-Fi等,以支持高速数据传输和低时延通信。
- 边缘计算技术:无人机需要搭载边缘计算节点,以提供计算、存储和数据处理能力。边缘计算技术需要支持分布式计算、数据缓存和实时数据处理等功能。
- 能源管理技术:无人机需要高效的能源管理系统,以确保在飞行过程中有足够的能量支持计算和通信任务。这包括电池管理、能源分配和节能策略等方面。
四、应用场景
- 紧急救援:在自然灾害或突发事件中,无人机可以迅速部署到灾区,为救援人员提供计算支持,如地图导航、数据分析等。
- 偏远地区通信:在偏远地区或山区,由于地形复杂,传统通信基站难以覆盖。无人机可以作为移动基站,为这些地区提供通信服务。
- 临时活动支持:在大型体育赛事、音乐会等临时活动中,无人机可以提供额外的计算和通信资源,以满足大量用户的网络需求。
- 农业监测:无人机可以搭载传感器和摄像头,对农田进行实时监测,收集数据并进行分析,以提高农业生产效率。
五、未来发展趋势
- 技术融合:未来,基于无人机的移动边缘计算网络将与人工智能、物联网等技术深度融合,形成更加智能、高效的计算网络。
- 标准化与规范化:随着技术的不断发展,相关标准和规范将逐渐完善,以推动基于无人机的移动边缘计算网络的广泛应用。
- 安全性与隐私保护:随着无人机在各个领域的应用越来越广泛,安全性和隐私保护将成为重要关注点。需要研究更加安全、可靠的通信协议和数据加密技术,以确保用户数据的安全性和隐私性。
- 低功耗与长续航:未来,无人机将需要更低的功耗和更长的续航时间,以支持更长时间的计算和通信任务。这需要研究更加高效的能源管理系统和电池技术。
六、结论
基于无人机的移动边缘计算网络具有广阔的应用前景和巨大的发展潜力。随着技术的不断进步和应用场景的不断拓展,它将在各个领域发挥越来越重要的作用。未来,需要继续深入研究相关技术,推动其标准化、规范化和广泛应用。
📚2 运行结果
部分代码:
%% parameters
global imgnum; %looping times
global N; % divide [0,1]*[0,1] map into N*N grid
global TARGET;
global UAV_info; % UAVs location matrix
global UAVnum;
global UAV_pos; % UAVi's initial position
global SumTarget;
global needReplan;
global enemysUK;
global enemysUK2plot;
global enemysK;
global enemysSize;
global traceRecord;
global G;
%% initialize target
imgnum=0;
TARGET = round([0.95 0.95]*N); %target position
%% initialize UAV
UAV_info = UAV_initialize;
UAVnum=size(UAV_info,1);
UAV_pos=[];
for i=1:UAVnum
UAV_pos(i,:)=UAV_info(i,1:2);
end
needReplan=ones(1,UAVnum); %UAVi need to replan when needReplan(i)=1
SumTarget=zeros(1,UAVnum); %when UAVi's SumTarget(i)=1, don't need further move
%% initialize enemys
enemysUK=enemyGuass; %Unknown obstacles(includs all UAVs) location matrix
enemysSize=size(enemysUK,1);
enemysUK2plot=enemys(); %used when drawing map
enemysK={}; % no enemy is detected initially
for i=1:UAVnum
enemysK{i}=[];
end
%% initialize trace record
traceRecord={}; % no record of trace initially
for i=1:UAVnum
traceRecord{i}=[];
end
%% initialize G Matrix
G={};
D=ones(N,N)*N^2; %initialize D with all elements are N^2 and target 0
D(TARGET(1),TARGET(2))=0;
for i=1:UAVnum
G{i}=[D];
end
%% parameters
global imgnum; %looping times
global N; % divide [0,1]*[0,1] map into N*N grid
global TARGET;
global UAV_info; % UAVs location matrix
global UAVnum;
global UAV_pos; % UAVi's initial position
global SumTarget;
global needReplan;
global enemysUK;
global enemysUK2plot;
global enemysK;
global enemysSize;
global traceRecord;
global G;
%% initialize target
imgnum=0;
TARGET = round([0.95 0.95]*N); %target position
%% initialize UAV
UAV_info = UAV_initialize;
UAVnum=size(UAV_info,1);
UAV_pos=[];
for i=1:UAVnum
UAV_pos(i,:)=UAV_info(i,1:2);
end
needReplan=ones(1,UAVnum); %UAVi need to replan when needReplan(i)=1
SumTarget=zeros(1,UAVnum); %when UAVi's SumTarget(i)=1, don't need further move
%% initialize enemys
enemysUK=enemyGuass; %Unknown obstacles(includs all UAVs) location matrix
enemysSize=size(enemysUK,1);
enemysUK2plot=enemys(); %used when drawing map
enemysK={}; % no enemy is detected initially
for i=1:UAVnum
enemysK{i}=[];
end
%% initialize trace record
traceRecord={}; % no record of trace initially
for i=1:UAVnum
traceRecord{i}=[];
end
%% initialize G Matrix
G={};
D=ones(N,N)*N^2; %initialize D with all elements are N^2 and target 0
D(TARGET(1),TARGET(2))=0;
for i=1:UAVnum
G{i}=[D];
end
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]邱铭. 基于微波供能的无人机移动边缘计算网络研究[D].广东工业大学,2020.DOI:10.27029/d.cnki.ggdgu.2020.001588.