【超全】【15种算法求解路径规划】基于SSA、RRT、PRM、dijkstra等15种算法的移动机器人路径规划研究(Matlab代码实现)

 👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

一、引言

二、路径规划算法概述

三、算法比较与分析

四、算法应用与实例分析

五、结论与展望

📚2 运行结果

2.1 SSA

2.3 RRTstar 

 2.4 PRM

 2.5 dijkstra

 2.6 Astar

2.7 APF  

2.8 DWA 

 2.9 GA

2.10 ACO 

 2.11 PSO

2.12 BFO 

2.13 ABC 

2.14  FA

2.15 GWO 

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

路径规划算法是智能技术中的研究热点之现有的路径规划算法包括图搜索概率法18]、模拟退火算法[9]、Dijkstra 算法[ 10]、A*算法[11-12]、人工势场法「 131神经网络算法l l4-15]、蚁群算法[16]、遗传算法[17-18]等。在这些路径规划算法中,仅有Dijkstra算法能够稳定地实现全局最优路径的搜索,而其它算法都有可能因为陷入局部最优而搜索出次优路径。因此, Dijkstra算法在无人机轨迹规划[11、船舶导航[2]、机器人路径规划[211、配用电通信网流量调度[221电能分布式管理与协调控制[23等领域广泛应用,同时也有学者针对Dijkstra算法计算效率较低的问题进行了一系列的改进[24-27]。本文利用15种算法求解路径规划。

一、引言

路径规划是移动机器人自主导航中的核心问题,旨在寻求一条从初始点到目标点的最优或近似最优路径,确保机器人在运动过程中不与障碍物发生碰撞。本文综述了15种路径规划算法,包括SSA、RRT、PRM和Dijkstra等,并对这些算法在移动机器人路径规划中的应用进行了深入探讨。

二、路径规划算法概述

  1. SSA(Simulated Swarm Algorithm):一种模拟群体行为的优化算法,通过模拟群体中个体的交互和协作来寻找最优解。
  2. RRT(Rapidly-exploring Random Tree):采用随机方式搜索空间,适用于高维或非线性问题。RRT算法通过构建随机树来探索可行解空间,快速找到一条从起点到目标点的路径。
  3. PRM(Probabilistic Roadmap):将随机生成的点作为可行解,构建路线图,从而实现路径规划。PRM算法适用于复杂环境中的路径规划,能够处理障碍物分布不均匀的情况。
  4. Dijkstra算法:基于图论,能够计算出所有节点到起点的最短路径。Dijkstra算法通过逐步扩展最短路径树来找到全局最优解,适用于静态环境中的路径规划。

此外,还包括A算法、人工势场法、神经网络算法、蚁群算法、遗传算法、模拟退火算法、Wavefront算法、Potential Field方法、Hybrid A算法、TEB(Time-Elastic Band)算法、Visibility Graph算法、Voronoi Diagram算法和Dynamic Window Approach等路径规划算法。这些算法各具特点,适用于不同的应用场景和条件。具体用到的方法见本博客第2部分。

三、算法比较与分析

  1. 全局路径规划与局部路径规划:全局路径规划基于环境先验完全信息,适用于静态环境;局部路径规划依赖于传感器信息,适用于动态环境。Dijkstra、A*等算法适用于全局路径规划,而RRT、PRM等算法则更适用于局部路径规划。
  2. 最优性与次优性:Dijkstra算法能够稳定地实现全局最优路径的搜索,而其他算法如A*、RRT等可能陷入局部最优而搜索出次优路径。
  3. 计算效率与复杂度:不同算法的计算效率和复杂度各异。例如,Dijkstra算法的时间复杂度为O(V^2),其中V表示节点数量;而RRT算法则通过随机采样和树扩展来降低计算复杂度。

四、算法应用与实例分析

  1. 无人机轨迹规划:Dijkstra算法在无人机轨迹规划中得到广泛应用,能够确保无人机在飞行过程中避开障碍物并找到最短路径。
  2. 船舶导航:船舶导航中需要考虑海洋环境、风浪等因素,RRT算法通过构建随机树来探索可行解空间,为船舶提供安全、高效的航行路径。
  3. 机器人路径规划:在移动机器人路径规划中,A算法和人工势场法得到广泛应用。A算法通过启发式搜索快速找到最短路径;人工势场法则将机器人所处的空间看作一个势场,通过模拟物理力来实现路径规划。

五、结论与展望

本文综述了15种路径规划算法在移动机器人路径规划中的应用,并对这些算法进行了比较与分析。未来,随着人工智能和传感器技术的不断发展,路径规划算法将在更多领域得到应用和发展。同时,针对特定应用场景和条件,需要进一步优化和改进现有算法,提高计算效率和路径规划质量。

📚2 运行结果

2.1 SSA

2.2 RRT

2.3 RRTstar 

 2.4 PRM

 2.5 dijkstra

 2.6 Astar

 

 

2.7 APF  

2.8 DWA 

 

 2.9 GA

2.10 ACO 

 2.11 PSO

2.12 BFO 

2.13 ABC 

2.14  FA

2.15 GWO 

部分代码:

for i = 1 : NP
        if (fit(i) < fpbest(i))
            fpbest(i) = fit(i);
            pbest(i, :) = X(i, :);
        end
        if(fpbest(i) < fgbest)
            fgbest = fpbest(i);
            gbest = pbest(i, :);
        end
    end
    gbest = LocalSearch(gbest,Xmax,G);
    fgbest = fitness(gbest,G);
    FG(gen,1)=fgbest;
end
gbest = round(gbest);
fgbest
figure
plot(FG,'b-')
route = [S(1) gbest E(1)];
path=generateContinuousRoute(route,G);
path=shortenRoute(path);
figure
path = path + repmat(S- [1 1] ,size(path,1),1);
drawPath(path,G0,0)

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

文章内容仅供参考,具体效果以运行结果为准

[1] Lixing Liu (2023) The basic algorithms involved in mobile robot path planning technology include RRT, PRM, dijkstra, and some meta heuristic algorithms

[2] M.H. Overmars, A. Gupta. "A motion planning scheme for polygonal robots

[3]张飞凯,黄永忠,李连茂,秦剑,刘晨.基于Dijkstra算法的货运索道路径规划方法[J].山东大学学报(工学版),2022,52(06):176-182.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值