路径规划
文章平均质量分 86
涵盖各种智能算法求解旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题等各种路径规划问题matlab仿真展示,更多代码和期刊发表合作可关注公众号天天Matlab
天天Matlab科研工作室
:某大厂资深算法工程师,从事Matlab算法仿真工作10年,擅长智能优化算法、神经网络预测、机器学习、信号处理、元胞自动机、图像处理、路径规划、无人机、无线传感器网络、车间调度、生产调度等多种领域的Matlab仿真,更多仿真源码、算法改进、Matlab项目和期刊发表可私信合作。
展开
-
【集装箱调度】基于粒子群算法实现考虑重量限制和时间约束的集装箱码头满载AGV自动化调度附matlab代码
集装箱码头作为全球贸易的重要枢纽,其高效运营对整个供应链的顺利运转至关重要。近年来,随着全球贸易的不断增长和港口吞吐量的不断攀升,集装箱码头的自动化程度也越来越高。自动导引车 (AGV) 作为自动化码头的重要组成部分,其调度效率直接影响着码头的整体效率。本文将探讨如何利用粒子群算法实现考虑重量限制和时间约束的集装箱码头满载AGV自动化调度。原创 2024-06-07 23:32:33 · 1038 阅读 · 0 评论 -
【船舶】基于PID控制算法和反步积分控制器实现考虑浪载荷风载荷流向船舶运动控制附matlab代码
船舶运动控制是航海领域的重要研究方向,其目标是通过控制系统实现对船舶运动的精准控制,以保证航行安全、提高航行效率和减少环境污染。近年来,随着船舶智能化程度的不断提高,对船舶运动控制系统的要求也越来越高。传统PID控制算法由于其简单易实现、鲁棒性强等优点,在船舶运动控制中得到了广泛应用。然而,在复杂海况下,船舶会受到浪载荷、风载荷和流向等因素的影响,传统的PID控制算法难以满足精确定位和轨迹跟踪的需求。原创 2024-05-30 07:43:41 · 569 阅读 · 0 评论 -
【二维路径规划】基于快速RRT-star实现二维空间移动机器人运动规划附matlab复现
移动机器人路径规划旨在解决在给定空间中从起始状态到目标状态创建无碰撞路径的问题,是无人作业的关键支撑技术。为了解决快速扩展随机树星 (RRT*) 算法收敛速度慢、规划效率低、路径成本高等问题,本文提出了一种基于混合采样策略和回溯选父节点的改进运动规划器 (Fast-RRT*)。一、RRT算法的局限性RRT* 算法是一种广泛应用于移动机器人路径规划的算法。它通过随机采样和扩展树的方式,逐步逼近目标状态。原创 2024-05-27 15:12:26 · 1070 阅读 · 0 评论 -
【船舶】基于神经网络估计船舶动态项,实现船舶曲线跟踪matlab实现
船舶曲线跟踪是船舶自动驾驶系统的重要组成部分,其目标是使船舶能够精确地跟踪预定的航线。传统的船舶曲线跟踪控制方法通常需要精确的船舶模型,然而,实际船舶的模型往往难以精确获取,且会受到海况、风力、载荷等因素的影响而发生变化。因此,如何准确估计船舶动态项,并将其应用于船舶曲线跟踪控制,成为当前研究的热点问题。神经网络在船舶动态项估计中的应用神经网络具有强大的非线性映射能力,能够从大量数据中学习复杂的非线性关系,这使得其在船舶动态项估计方面具有独特优势。原创 2024-05-21 12:45:12 · 297 阅读 · 0 评论 -
【船舶】船舶操纵性MMG方程matlab实现,适用于船舶操纵轨迹预测
船舶操纵性是指船舶在各种外界环境和操纵条件下,对舵、螺旋桨等操纵机构的响应能力,以及船舶运动轨迹的预测能力。准确预测船舶操纵轨迹对于航行安全、航线规划、避碰决策等方面至关重要。近年来,随着船舶自动化和智能化的发展,对船舶操纵性预测模型的需求也日益增长。MMG方程概述船舶操纵性MMG方程(Maneuvering Model Group equations)是基于船舶动力学方程和控制理论发展起来的,它能够描述船舶在各种操纵条件下的运动状态,并预测船舶的轨迹。原创 2024-05-21 12:40:16 · 890 阅读 · 0 评论 -
【路径规划】基于快速探索随机树 (RRT) 算法实现网格内找到从指定起始区域到目标区域的路径,并避开沿途的障碍物附matlab代码
路径规划是机器人学、人工智能和自动化领域中的一个重要问题,其目标是在给定环境中找到从起点到终点的最佳路径。在许多实际应用中,例如无人驾驶汽车、仓库机器人和医疗机器人,路径规划至关重要。本文将介绍一种常用的路径规划算法——快速探索随机树 (Rapidly-exploring Random Tree, RRT) 算法,并展示如何使用该算法在网格环境中找到从指定起始区域到目标区域的路径,同时避开沿途的障碍物。1. RRT 算法概述。原创 2024-05-19 23:26:49 · 834 阅读 · 0 评论 -
【TSP问题】基于蚁群算法ACO 求解52城市旅行商最短距离问题附含Matlab代码
旅行商问题(TSP)是一个经典的组合优化问题,其目标是在给定的一组城市中找到一条最短的路径,使得每个城市都被访问一次且仅访问一次。52城市旅行商问题是指在52个城市中找到一条最短的路径,使得每个城市都被访问一次且仅访问一次。原创 2024-05-12 22:41:16 · 572 阅读 · 0 评论 -
【TSP问题】基于鲸鱼算法WOA求解单仓库多旅行商问题MTSP附Matlab代码
单仓库多旅行商问题 (MTSP) 是一种经典的组合优化问题,其目标是在满足一定约束条件下,找到最优路径,使所有旅行商从同一个仓库出发,依次访问所有客户点,最后返回仓库,并最小化总旅行距离或时间。MTSP 在物流配送、车辆路径规划、资源调度等领域有着广泛的应用。近年来,随着人工智能技术的快速发展,各种智能优化算法被应用于MTSP求解,取得了显著的成果。其中,鲸鱼算法 (WOA) 是一种新兴的仿生优化算法,它模拟了座头鲸的捕食行为,具有收敛速度快、寻优精度高、鲁棒性强等优点,在MTSP求解中展现出巨大的潜力。原创 2024-05-10 23:26:40 · 554 阅读 · 0 评论 -
【VRP问题】基于遗传算法求解带时间窗车辆路径规划问题VRPTW,显示每个客户到达时间附matlab代码
现有16个客户点,1个配送中心。客户点有不同数量的货物需求、期望收货时间以及所能接受的收货时间。有7辆运送货物的车,每辆车有不同的承载量。现需要指派n(n原创 2024-05-10 18:31:47 · 985 阅读 · 0 评论 -
【栅格地图】基于遗传算法实现机场滑行道路径规划附matlab代码
机场滑行道路径规划是机场地面运行的重要组成部分,其目标是在满足安全性和效率的前提下,为飞机提供从停机位到跑道的最优路径。传统的滑行道路径规划方法通常依赖于专家经验和人工干预,效率低下且缺乏灵活性。近年来,遗传算法作为一种高效的全局优化算法,被广泛应用于滑行道路径规划领域。本文将介绍基于遗传算法实现机场滑行道路径规划的原理、方法和应用,并对未来的研究方向进行展望。关键词机场滑行道路径规划,遗传算法,全局优化,路径规划1. 引言。原创 2024-05-09 18:39:40 · 303 阅读 · 0 评论 -
【路径规划】基于麻雀算法机器人栅格地图最短路径规划附Matlab代码
本文介绍了一种基于麻雀算法的机器人栅格地图最短路径规划方法。该方法将麻雀算法应用于机器人路径规划问题,通过模拟麻雀觅食的行为来寻找最优路径。实验结果表明,该方法能够有效地找到机器人从起点到终点的最短路径,并且具有较高的效率和鲁棒性。机器人路径规划是机器人学中的一个重要研究领域,其目标是找到机器人从起点到终点的最优路径。传统的路径规划方法,例如A*算法和Dijkstra算法,在解决简单环境下的路径规划问题时表现良好,但对于复杂环境下的路径规划问题,则难以找到最优路径。原创 2024-05-09 12:47:42 · 276 阅读 · 0 评论 -
【VRP问题】基于遗传算法求解考虑固定成本+油耗+制冷+碳排放的冷链物流多车辆配送路线规划附Matlab代码
冷链物流作为现代物流的重要组成部分,在生鲜食品、医药等行业扮演着至关重要的角色。由于冷链物流对温度控制有严格要求,其配送路线规划需要综合考虑多种因素,包括固定成本、油耗、制冷能耗和碳排放等。遗传算法作为一种高效的优化算法,可以有效地求解此类多目标优化问题。本文将基于遗传算法,对考虑固定成本、油耗、制冷和碳排放的冷链物流多车辆配送路线规划问题进行研究。首先,我们将建立数学模型,将上述因素纳入考虑范围。其次,我们将设计遗传算法,并对其进行参数设置。最后,我们将通过算例验证算法的有效性。原创 2024-05-07 12:48:15 · 650 阅读 · 0 评论 -
【船舶】基于A星算法结合动态窗口DWA实现3艘船只避碰路径规划问题求解附matlab代码
船舶避碰路径规划是船舶自主航行中关键的技术之一。本文提出了一种基于A星算法结合动态窗口DWA的3艘船只避碰路径规划方法。该方法首先利用A星算法搜索全局最优路径,然后利用DWA算法对路径进行局部优化,以避免与其他船只发生碰撞。仿真结果表明,该方法能够有效地规划出安全、高效的避碰路径,并具有较好的鲁棒性。原创 2024-05-03 21:09:15 · 767 阅读 · 0 评论 -
【TSP问题】基于遗传算法GA实现最短距离 多起点多终点多旅行商问题求解附Matlab代码
多起点多终点多旅行商问题 (MDTSP) 是指在多个起点和多个终点之间,安排多个旅行商进行路线规划,使得所有旅行商都能完成从起点到终点的旅行,且总路程最短。该问题在现实生活中有着广泛的应用,例如物流运输、快递配送、城市公交线路规划等。遗传算法 (GA) 是一种模拟自然界生物进化过程的优化算法。它通过模拟生物的遗传和变异过程,不断优化问题的解,最终找到最优解。GA 的基本步骤如下:初始化种群:随机生成一定数量的染色体,每个染色体代表一个可行解。适应度评估:根据每个染色体的适应度函数计算其适应度值。原创 2024-05-02 21:06:56 · 122 阅读 · 0 评论 -
【机器人栅格地图】基于天牛须算法实现栅格地图机器人最短路径规划附Matlab代码
机器人路径规划是机器人学研究中的一个重要课题,其目的是找到机器人从起点到目标点的最优路径。近年来,随着人工智能技术的飞速发展,基于生物启发算法的路径规划方法得到了广泛关注。天牛须算法是一种模拟天牛触角搜索食物的智能算法,具有鲁棒性强、全局搜索能力强等优点。本文将基于天牛须算法,对机器人栅格地图最短路径规划进行研究。机器人栅格地图是一种将环境信息离散化表示的二维地图,它将环境划分为一个个大小相等的网格,每个网格代表一个特定的状态。机器人最短路径规划是指在栅格地图中找到机器人从起点到目标点的最短路径。原创 2024-05-01 23:36:28 · 842 阅读 · 0 评论 -
【SLAM】基于快速匹配算法实现2D激光雷达数据SLAM机器人路径规划附Matlab代码
本文介绍了一种基于快速匹配算法实现2D激光雷达数据SLAM机器人路径规划的方法。该方法利用激光雷达数据构建环境地图,并使用快速匹配算法进行定位和建图。同时,本文还介绍了一种基于A*算法的路径规划方法,该方法可以根据环境地图和目标位置生成最优路径。最后,本文通过仿真实验验证了该方法的有效性。原创 2024-05-01 22:55:55 · 255 阅读 · 0 评论 -
【TSP问题】基于动物迁徙算法AMO求解单仓库多旅行商问题MTSP附Matlab代码
单仓库多旅行商问题 (MTSP) 是指从一个仓库出发,多个旅行商分别访问多个城市,最终回到仓库,使得总路程最短的问题。MTSP 是一个经典的组合优化问题,广泛应用于物流运输、路径规划等领域。近年来,随着人工智能技术的快速发展,基于动物迁徙算法 (AMO) 的求解方法逐渐受到关注。AMO 是一种新型的群体智能算法,其灵感来自于动物迁徙的行为,具有较好的全局搜索能力和收敛速度。原创 2024-04-28 21:21:44 · 999 阅读 · 0 评论 -
【船舶】基于国际海上避碰规则实现两船自动避让附matlab代码
随着海上交通日益繁忙,船舶碰撞事故频发,给航运安全和海洋环境带来巨大威胁。为了提高航行安全,国际海事组织(IMO)制定了《国际海上避碰规则》(COLREGS),对船舶在不同情况下的避碰义务和责任进行了明确规定。近年来,随着人工智能技术的发展,自动避碰系统逐渐成为研究热点。本文基于国际海上避碰规则,设计了一种两船自动避让系统,该系统能够根据船舶的航行状态和周围环境信息,自动识别避碰目标并制定避碰策略,从而提高航行安全。原创 2024-04-28 13:17:38 · 771 阅读 · 0 评论 -
【多机器人】基于蚁群算法求解考虑体积重量货损因素的多AGV车辆路径规划问题附matlab代码
随着自动化技术的快速发展,AGV(Automated Guided Vehicle)在现代物流系统中扮演着越来越重要的角色。AGV能够自动完成物料搬运任务,提高物流效率,降低人工成本。然而,在实际应用中,AGV路径规划问题是一个复杂的组合优化问题,需要考虑多种因素,例如体积、重量、货损等。原创 2024-04-26 15:08:13 · 784 阅读 · 0 评论 -
【船舶】基于领导者-跟随者模型无人船编队控制方法附matlab复现
无人船编队控制技术是近年来海洋工程领域的研究热点之一,其在海洋环境监测、资源勘探、海上搜救等方面具有广阔的应用前景。领导者-跟随者模型是一种经典的编队控制方法,它将编队中的无人船分为领导者和跟随者,领导者负责制定航行路线和速度,跟随者则根据领导者的信息进行自主航行。本文将深入探讨基于领导者-跟随者模型的无人船编队控制方法,分析其原理、优缺点以及应用前景。领导者-跟随者模型是一种基于行为的编队控制方法,它将编队中的无人船分为领导者和跟随者。领导者负责制定航行路线和速度,并将其信息广播给跟随者。原创 2024-04-24 12:20:05 · 840 阅读 · 0 评论 -
【TSP问题】基于蚁群算法ACS求解单仓库多旅行商问题MTSP附Matlab代码
单仓库多旅行商问题(MTSP)是指多个旅行商从同一个仓库出发,分别访问多个客户,最后回到仓库,使得总路程最短的问题。MTSP是旅行商问题(TSP)的一个变种,在实际生活中有着广泛的应用,例如快递配送、车辆调度、垃圾收集等。蚁群算法(ACO)是一种模拟蚂蚁觅食行为的智能优化算法,近年来被广泛应用于求解TSP问题。本文将介绍基于蚁群算法ACS(Ant Colony System)求解MTSP的方法,并对算法的性能进行分析。本文介绍了基于蚁群算法ACS求解MTSP的方法,并对算法的性能进行了分析。原创 2024-04-23 10:16:22 · 1214 阅读 · 0 评论 -
【船舶】基于MATLAB模拟风浪流模型的水面船舶三自由度运动仿真
水面船舶的三自由度运动是指船舶在风浪流作用下的纵荡、横摇和垂荡运动。准确模拟船舶的三自由度运动对于评估船舶的航行安全、操纵性能和舒适性至关重要。近年来,随着计算机技术的发展,基于风浪流模型的水面船舶三自由度运动仿真技术得到了快速发展,并逐渐成为船舶设计和研究的重要工具。基于风浪流模型的水面船舶三自由度运动仿真技术是船舶设计和研究的重要工具。该技术可以准确模拟船舶在风浪流作用下的运动状态,为评估船舶的航行安全、操纵性能和舒适性提供可靠的依据。随着计算机技术的发展,该技术将得到进一步发展和应用。原创 2024-04-23 09:23:15 · 589 阅读 · 0 评论 -
【VRP问题】基于蚁群算法求解带容量的车辆路径规划问题CVRP附Matlab代码
车辆路径规划问题 (Vehicle Routing Problem, VRP) 是一个经典的组合优化问题,其目标是在满足一系列约束条件下,为一组车辆规划最优路线,以完成对多个客户的配送任务。VRP 问题在现实生活中有着广泛的应用,例如快递物流、城市配送、垃圾收集等。带容量的车辆路径规划问题 (Capacitated Vehicle Routing Problem, CVRP) 是 VRP 问题的一个变种,其增加了车辆载重量的约束。原创 2024-04-22 10:04:00 · 813 阅读 · 0 评论 -
【多机器人】基于A星算法结合排队机制实现智能仓储机器人巡逻及避碰附matlab代码
本文介绍了一种基于A星算法结合排队机制实现智能仓储机器人巡逻及避碰的方案。该方案利用A星算法规划机器人路径,并结合排队机制解决多机器人同时请求路径规划时的冲突问题,有效提高了巡逻效率和安全性。随着电子商务的迅猛发展,智能仓储机器人得到了广泛应用。机器人巡逻是智能仓储系统中一项重要的功能,它可以及时发现仓库异常情况,并进行相应的处理。然而,多机器人同时进行巡逻时,可能会出现路径冲突问题,导致机器人碰撞或效率低下。原创 2024-04-19 20:55:42 · 854 阅读 · 0 评论 -
【机器人编队】基于行为和领航者算法实现机器人混合编队通信配合协作变换队形和路径规划Matlab代码
近年来,多机器人编队技术在各个领域得到了广泛的应用,例如搜索救援、环境监测、协同作业等。为了提高多机器人编队的协作效率和灵活性,本文提出了一种基于行为和领航者算法的混合编队通信配合方法,实现机器人编队的变换队形和路径规划。该方法将机器人分为领航者和跟随者两类,领航者负责规划路径并引导跟随者,跟随者根据领航者的指令进行运动。通过行为树和领航者算法的结合,机器人可以根据环境变化和任务需求进行动态调整,实现高效的协作。原创 2024-04-18 23:48:49 · 754 阅读 · 0 评论 -
【TSP问题】基于帝企鹅算法AFO求解单仓库多旅行商问题MTSP附Matlab代码
旅行商问题(TSP)是组合优化中的一个经典问题,其目标是找到一个最优的环路,使得该环路经过给定城市集合中的所有城市且仅经过一次。单仓库多旅行商问题(MTSP)是TSP的一个扩展,其中存在一个仓库,旅行商需要从仓库出发,访问多个城市并返回仓库,且每个城市只能被访问一次。本文提出了一种基于帝企鹅算法(AFO)的MTSP求解方法,该方法通过模拟帝企鹅的觅食行为,有效地搜索MTSP的解空间,并获得高质量的解。引言TSP和MTSP在现实世界中有着广泛的应用,例如物流配送、车辆调度和旅行规划等。原创 2024-04-16 17:42:38 · 347 阅读 · 0 评论 -
多机器人协同的全面消毒与覆盖优化系统matlab复现
随着传染病的不断蔓延,对公共环境进行全面消毒已成为保障公共卫生安全的必要措施。传统的消毒方式效率低下、覆盖范围有限,无法满足当前的消毒需求。本文提出了一种基于多机器人协同的全面消毒与覆盖优化系统,该系统通过多机器人协同工作,实现对目标区域的全面消毒和覆盖率优化。原创 2024-04-12 15:46:32 · 395 阅读 · 0 评论 -
【交通配流】基于OD表的逐一起始点、终点的基础数据进行配流容量限制交通分配附matlab代码
交通配流是交通规划中的重要环节,其目的是在给定的交通网络和交通需求条件下,合理分配交通流,以优化交通系统性能。本文介绍一种基于OD表的逐一起始点、终点的基础数据进行配流容量限制交通分配的方法,该方法能够充分考虑交通网络的容量限制,并逐一起始点、终点地进行交通分配,从而得到更加准确和合理的交通分配结果。原创 2024-04-11 16:58:42 · 643 阅读 · 0 评论 -
【机器人栅格地图】基于A星结合B样条实现机器人路径规划附matlab代码
机器人路径规划是机器人学中一项基本且重要的任务。它涉及确定机器人从起始位置到目标位置的最优路径。栅格地图是一种广泛用于机器人路径规划的环境表示方法,其中环境被划分为均匀的单元格。A星算法A星算法是一种启发式搜索算法,用于在栅格地图中查找最短路径。它通过评估每个单元格的总成本(g值和h值)来选择要扩展的单元格。g值是机器人从起始位置移动到该单元格的实际成本,而h值是机器人从该单元格移动到目标位置的估计成本。B样条曲线B样条曲线是一种分段多项式曲线,通常用于表示平滑的路径。原创 2024-04-09 12:15:01 · 994 阅读 · 0 评论 -
【VRP问题】基于遗传算法求解带时间窗的考虑续驶里程、额定载重量、车数量电动汽车最小成本配送路径规划EVRPTW附Matlab代码
电动汽车配送路径规划 (EVRPTW) 问题是一个复杂的组合优化问题,它涉及确定一组电动汽车 (EV) 的配送路径,以将货物从配送中心运送到客户处,同时考虑续驶里程、额定载重量、车数量和时间窗等约束条件。目标是找到一条总配送成本最小的配送路径。原创 2024-04-07 20:55:03 · 1032 阅读 · 0 评论 -
【VRP问题】基于蚁群算法求解带容量的最短路径和含满载率车辆路径规划问题CVRP附Matlab代码
1. 问题描述**车辆路径规划问题(VRP)**是一个经典的组合优化问题,其目标是在给定一组客户和一个配送中心的情况下,找到一条或多条最短路径,使所有客户的需求都能得到满足,同时满足车辆容量和满载率约束。带容量的最短路径(CSP)问题是VRP的一个变体,其中每条路径都有一个容量限制。如果一条路径上的总需求超过了容量限制,则该路径无效。**含满载率车辆路径规划问题(CVRP)**是VRP的另一个变体,其中车辆必须以满载率运行。这意味着每条路径上的总需求必须等于或大于车辆容量。2. 蚁群算法。原创 2024-04-05 23:36:29 · 996 阅读 · 0 评论 -
【VRP问题】基于NSGAII实现带时间窗车辆路径满意度和最小距离多目标优化附matlab代码
车辆路径问题(VRP)是物流和运输领域中的一个经典优化问题。本文提出了一种基于非支配排序遗传算法 II(NSGA-II)的多目标优化算法,用于解决带时间窗的车辆路径问题(VRPTW)。该算法同时考虑了车辆路径满意度和最小距离两个目标,旨在提高客户满意度和降低运输成本。原创 2024-04-05 00:20:54 · 884 阅读 · 0 评论 -
【路径规划】基于NMPC实现小车避障加跟踪附matlab代码
移动机器人的路径规划是机器人学领域中的一个重要课题,它涉及如何为机器人生成一条从起始点到目标点的安全且有效的路径。在实际应用中,机器人往往需要在复杂的、动态变化的环境中执行任务,因此路径规划算法需要能够处理障碍物、未知区域和运动目标等各种挑战。NMPC 简介非线性模型预测控制 (NMPC) 是一种先进的控制技术,它将模型预测与最优化相结合。在 NMPC 中,首先建立机器人的运动模型,然后使用该模型预测未来一段时间内的状态和控制量。原创 2024-04-04 13:19:53 · 912 阅读 · 0 评论 -
【VRP问题】基于免疫优化遗传算法求解考虑续驶里程、额定载重量、数量、起始点和带时间窗的电动汽车配送最小成本路径规划EVRP问题附Matlab代码
电动汽车配送最小成本路径规划 (EVRP) 问题是一种复杂的组合优化问题,涉及考虑续驶里程、额定载重量、数量、起始点和带时间窗等因素的配送路径规划。本文提出了一种基于免疫算法 (IA) 的方法来求解 EVRP 问题。该方法将 EVRP 问题编码为抗原,并使用免疫算法进行进化计算,以寻找最优解。实验结果表明,该方法能够有效地求解 EVRP 问题,并获得较好的解。原创 2024-03-31 23:47:04 · 804 阅读 · 0 评论 -
【栅格路径规划】基于迪杰斯特拉算法与蚁群算法实现单机器人栅格地图最短路径规划附Matlab代码
路径规划是机器人学中的一个基本问题,对于单机器人在栅格地图中的运动尤为重要。本文提出了一种基于迪杰斯特拉算法和蚁群算法的混合方法,用于解决单机器人在栅格地图中的最短路径规划问题。该方法结合了迪杰斯特拉算法的确定性搜索和蚁群算法的启发式搜索,有效地平衡了探索和利用,提高了路径规划的效率和鲁棒性。引言在机器人学中,路径规划是机器人从起始位置移动到目标位置的一系列动作序列。对于单机器人在栅格地图中的运动,路径规划至关重要,因为它可以确保机器人安全有效地到达目标位置,同时避免障碍物。相关工作。原创 2024-03-30 22:39:12 · 786 阅读 · 0 评论 -
【VRP问题】基于混合K-Means结合蚁群算法求解带容量的最短距离车辆路径规划问题CVRP附Matlab代码
车辆路径规划(VRP)问题是运筹学中的一个经典问题,其目标是在满足特定约束条件下,为一组车辆规划最优路径,以最小化总行驶距离或时间。带容量的最短距离车辆路径规划问题(CVRP)是VRP问题的一个变种,其中每辆车都具有有限的容量,并且需要考虑车辆的装载和卸载操作。本文提出了一种基于混合K-Means结合蚁群算法的CVRP求解方法。该方法首先利用K-Means算法对客户点进行聚类,然后将聚类中心作为蚁群算法的初始解。蚁群算法通过模拟蚂蚁的觅食行为,不断更新和优化路径,最终得到CVRP问题的最优解。原创 2024-03-29 23:40:16 · 1025 阅读 · 0 评论 -
【VRP问题】基于蚁群算法求解公交车路径规划问题附Matlab代码
公交车路径规划问题(Vehicle Routing Problem,VRP)是一个经典的组合优化问题,其目标是在满足一定约束条件下,为一组公交车规划出一组最优路径,使得总行驶距离或总行驶时间最小。VRP问题在实际生活中有着广泛的应用,例如公交线路规划、物流配送等。原创 2024-03-23 23:00:25 · 1054 阅读 · 0 评论 -
【路径规划】基于豪猪算CPO实现栅格地图机器人最短路径规划附Matlab代码
在机器人领域,路径规划是机器人自主导航的关键技术之一。栅格地图是机器人环境感知的重要数据结构,它将机器人所在环境划分为一个个规则的网格,每个网格表示环境中某一点的状态(如可通行或不可通行)。基于栅格地图的机器人最短路径规划,是路径规划领域的一个经典问题。基于豪猪算法 (CPO) 的栅格地图机器人最短路径规划算法,是一种简单易懂、鲁棒性强且计算效率高的算法。它广泛应用于机器人导航、避障规划和搜索救援等场景。随着机器人技术的不断发展,CPO 算法将在路径规划领域发挥越来越重要的作用。原创 2024-03-23 22:43:34 · 878 阅读 · 0 评论 -
2024首发原创! 基于豪猪算法CPO求解单仓库多旅行商问题附Matlab代码
旅行商问题 (TSP) 是组合优化中的经典问题,其目标是在给定一组城市和城市之间的距离的情况下,找到一条最短的路径,访问所有城市并返回出发点。单仓库多旅行商问题 (SDMTSP) 是 TSP 的一个变体,其中有多个旅行商从一个仓库出发,访问所有城市并返回仓库。豪猪算法豪猪算法 (CPO) 是一种受豪猪觅食行为启发的元启发式算法。豪猪是一种群居动物,以其锋利的刺而闻名。在觅食过程中,豪猪会集体移动,相互保护,避免捕食者。CPO 算法模拟了豪猪的觅食行为。它将候选解视为豪猪,将搜索空间视为觅食区域。原创 2024-03-22 23:26:20 · 1300 阅读 · 0 评论 -
【VRP问题】基于遗传算法求解带时间窗的车辆路径规划目标函数为运输成本、惩罚成本的TWVRP问题附Matlab代码
车辆路径规划(VRP)问题是一种经典的组合优化问题,其目标是为一组车辆规划最优路径,以满足一系列客户的需求。在带时间窗(TW)约束的VRP(TWVRP)问题中,每个客户都有一个指定的送货时间窗,车辆必须在该时间窗内送货。在TWVRP问题中,目标函数通常包括两个部分:运输成本和惩罚成本。运输成本是指车辆行驶的总距离或总时间。惩罚成本是指车辆违反时间窗约束的惩罚。原创 2024-03-22 23:23:28 · 744 阅读 · 0 评论