动态规划之礼物的最大数量问题

一.题目描述

这就是本题的题目,题目很简单,如图所示

131
151
421

每一个格中的数字表示在此处我们可以获取的礼物,从左上角的位置出发,到达右下角的位置,要求每次只能向右或向下移动一格

二.讲解算法原理

1.状态表示

我们定义一个二维数组dp,dp[i][j]表示到达第i+1行,第j+1列时,获得的礼物总数(包括此处的礼物)

 

2.状态转移方程

 

1
2

 

所以dp[i][j]=max(dp[i-1][j]+g[i][j],dp[i][j-1]+g[i][j-1];

3.初始化

当[i][j]表示如下位置时,会出现越界行为

所以我们要这样

所以,我们需要开辟一个4行,4列的二维数组,

在这里有两个注意的地方

1.新加的绿色的地方填的值要保证后面的填表是正确的

2.下标的映射

因为是用的是最大值,所以我们在新加的几个位置里设0即可,由于我们使用的是vector,默认会存放0,所以我们不需要进行相关的操作。

4.填充顺序

因为我们是从左上角到右下角,所以,我们进行填充的顺序是从上往下,同行,从左往右依次进行填充,

5.返回值

关于返回值问题,由于本来是m*n的数组,我们加了一行一列,所以右下角的位置就变成了[m][n],

返回的便是dp[m][n]。

三.代码实现

class Solution
{
 public:
    int maxValue(vector<vector<int>>& grid)
    {
        //1.创建dp表
        //2.初始化
        //3.填表
        //3.返回结果
       int m=grid.size();
       int n=frid[1].size();
       vector<vector<int>> dp(m+1,vector<int>(n+1));
       for(int i=1;i<=m;i++)
       {
           for(int j=1;j<=n;j++)
           {
                dp[i][j]=max(dp[i-1][j],dp[i][j-1])+grid[i-1][j-1];
           }
       }
        
       return dp[m][n];

            
    }
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值