动态规划之最短路程问题

hello大家好,淘气的我又来了,今天我给大家带来了和动态规划相关的问题,带好笔和纸,咱们开始了

一.题目描述

我们举一个简单的例子,看下边这个图

要想从1到9,我们有如下几种符合要求的选择

1.1->2->3->6->9;

2.1->2->5->6->9;

3.1->4->5->6->9;

4.1->2->5->8->9;

5.1->4->5->8->9;

6.1->4->7->8->9;

二.讲解算法原理

1.状态表示

dp[i][j]表示从出发点到[i][j]位置一共有多少中走法;

2.状态转移方程

如上图所示,我们不难发现,如果想要到达第9个格,那么首先我们必须到第8个格或者第6个格

所以

所以我们得出结论;dp[i][j]=dp[i-1][j]+dp[i][j-1];

3.初始化问题

初始化问题是这类动态规划问题必须解决的一个问题

当dp[i][j]表示如下位置时,会出现越界行为,所以,我们可以这样

由原先的m*n的数组加上一行一列,变为(m+1)*(n+1)的数组

我们知道,会出现越界的位置,都是只有一种路径

所以我们可以把新加的几个位置初始化为如下

如此,根据我们的状态转移方程,可以得出可能越界的位置的路径正好为1;

4.填充顺序

我们仍然采取由上到下,从左到右的顺序

5.返回值

返回dp[m][n]的值;

三.代码实现

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值