图论入门题题解

✨欢迎来到脑子不好的小菜鸟的文章✨

      🎈创作不易,麻烦点点赞哦🎈

          所属专栏:刷题_脑子不好的小菜鸟的博客-CSDN博客

          我的主页:脑子不好的小菜鸟

          文章特点:关键点和步骤讲解放在

          代码相应位置

拓扑排序 / 家谱树
https://vjudge.net/contest/613618#problem/A


//拓扑排序:找到入度为0的点,将其写入答案,再删去其箭头,再继续找入度为0的点,循环往复

vector<int>edeg[101];
int n, deg[101] = { 0 };//入度
void init()//建图
{
    cin >> n;
    int i, val;
    for (i = 1; i <= n; i++)
    {
        while (cin >> val && val != 0)
        {
            edeg[i].push_back(val);
            deg[val]++;
        }
    }
}

void toposort()//拓扑排序
{
    int i;
    queue<int> que;
    for (i = 1; i <= n; i++)
    {
        if (deg[i] == 0)
        {
            cout << i << ' ';
            que.push(i);
        }
    }

    while (!que.empty())
    {
        int t = que.front();
        que.pop();

        for (int i : edeg[t])
        //相当于i表示edeg[t]的第一个元素,进行一次循环后就是第二个元素,循环往复
        {
            deg[i]--;
            if (deg[i] == 0)
            {
                cout << i << ' ';
                que.push(i);
                //push的原因:可能i(也就是edeg[t])还有箭头指向其他的数,也就是后面辈分比它小的,要通过i来找比它辈分小的
            }
        }
    }
}

int main()
{
    init();//建图
    toposort();//拓扑排序
    return 0;
}

P3371 【模板】单源最短路径(弱化版)
https://www.luogu.com.cn/problem/P3371

///*法一:邻接矩阵*/
占的空间较多,时间复杂度较大,不适合


/*法二:结构体,堆优化*/
//要一个结构体,存一个点相关的东西(to, wei, next)(终点, 权值, 下一个儿子)
//cnt:结构体下标
//head[MAX]:head[i]:查找i点的第一个儿子
//pos:将被标记的值
//ans[MAX]:最短距离
//visit[MAX]:是否被标记过

//题解:https://www.luogu.com.cn/article/oswxjzrl
#include <iostream>#include <climits>
using namespace std;
const int MAX = 1e6;int cnt;//结构体下标int visit[MAX];//标记int n, m, s;int head[MAX];//存放儿子int ans[MAX];//放到起点的最短距离
struct EDGE
{
    int wei;//权值
    int to;//目的地
    int next;//下一个儿子
}edge[MAX];
void add(int u, int v, int w){
    cnt++;
    edge[cnt].wei = w;
    edge[cnt].to = v;
    edge[cnt].next = head[u];//将下一个儿子记录
    head[u] = cnt;//更新第一个儿子
}
int main(){
    cin >> n >> m >> s;
    int i;

    //初始化ans
    for (i = 1; i <= n; i++)
        ans[i] = INT_MAX;

    ans[s] = 0;

    int u, v, w;
    for (i = 1; i <= m; i++)
    {
        cin >> u >> v >> w;
        add(u, v, w);
    }

    int pos = s;//初始化pos为s
    while (visit[pos] == 0)
    {
        int minn = INT_MAX;//注意更新
        visit[pos] = 1;//标记

        //更新儿子的最短路径
        for (i = head[pos]; i != 0; i = edge[i].next)
        {
            if (visit[edge[i].to] == 0 && ans[edge[i].to] > ans[pos] + edge[i].wei)
                ans[edge[i].to] = ans[pos] + edge[i].wei;
        }

        //找最短路径
        for (i = 1; i <= n; i++)
        {
            if (visit[i] == 0 && ans[i] < minn)
            {
                minn = ans[i];
                pos = i;
            }
        }
    }

    for (i = 1; i <= n; i++)
        cout << ans[i] << ' ';
    cout << endl;
    return 0;
}

P4779 【模板】单源最短路径(标准版)
https://www.luogu.com.cn/problem/P4779

注意:该题用上一题的代码会超时,因此要用堆优化,也就是优先队列



//友情提示:正权图  请  使用dijkstra算法,   负权图  请  使用SPFA算法

//弱化版的代码超时---->要用堆优化
/*
核心:priority_queue< pair<int,int> > 用优先队列来取最近的点,就不用遍历找点了

在pq中,是按pair的第一个元素(first)由大到小排序的,所以pair<距离,点号>,注意因为要的是最小值,所以距离要存负值
其实距离是纯纯的工具人,我们只是需要它来维持点的排序

每次取队首h,取出的就是dis最短的点
还要注意:
如果这个点的dis不等于h的dis,说明这个点在入队之后被更新了,那么我们就不用这个点了,直接continue;
因为后面会有个h2点比h1的dis更小,用h1更新就没有意义了
*/

//使用优先队列,注意:优先队列是从大到小排列,所以存进去应该存负数

C代码:
#include <queue>
/*堆优化:利用优先队列,降低复杂度,直接排序,注意优先队列是由大到小排列的,因此距离是负数 */
#include <climits>
#include <iostream>

using namespace std;

const int MAX = 1e6;
int n, m, s;
int ans[MAX];
int cnt;
int head[MAX];
int visit[MAX];

struct EDGE
{
    int to;
    int next;
    int wei;
}edge[MAX];

void add(int u, int v, int w)
{
    cnt++;
    edge[cnt].wei = w;
    edge[cnt].to = v;
    edge[cnt].next = head[u];
    head[u] = cnt;
}

int main()
{
    int i;
    int u, v, w;
    cin >> n >> m >> s;

    for (i = 1; i <= n; i++)
        ans[i] = INT_MAX;
    ans[s] = 0;

    for (i = 1; i <= m; i++)
    {
        cin >> u >> v >> w;
        add(u, v, w);
    }

    priority_queue<pair<int, int> >que;//距离,点
    que.push({0, s});

    while (!que.empty())
    {
        int qh = que.top().first;
        int h = que.top().second;
        que.pop();/*记得pop()!!!!!!!!!*/

        if (visit[h] == 0)
        {
            visit[h] = 1;
            for (i = head[h]; i != 0; i = edge[i].next)//不断找下一个儿子,直到找完
            {
                if (ans[edge[i].to] > ans[h] + edge[i].wei)
                {
                    ans[edge[i].to] = ans[h] + edge[i].wei;
                    if (visit[edge[i].to] == 0)
                        que.push({ -ans[edge[i].to], edge[i].to });

                }
            }
        }
    }

    for (i = 1; i <= n; i++)
        cout << ans[i] << ' ';
    cout << endl;
    return 0;
}

B3647 【模板】Floyd
https://www.luogu.com.cn/problem/B3647 



//floyd算法
//要注意中转点,可以直接i到j,也可以i->k,k->j,因此要比较两个数据的大小,最后表中的是最短路径
//注意是无向图

#include <climits>

int main()
{
    int n, m, i, j, u, v, w;
    long long board[105][105] = { 0 };//存最短路径

  

    cin >> n >> m;

    for (i = 1; i <= n; i++)
    {
        for (j = 1; j <= n; j++)
        {
            if (i == j)
                board[i][j] = 0;
            else
               board[i][j] = INT_MAX;
        }
    }

    for (i = 1; i <= m; i++)
    {
        cin >> u >> v >> w;
        if (w < board[u][v])
            board[u][v] = w;
        if (w < board[v][u])
            board[v][u] = w;
    }

    int k;           
    for (k = 1; k <= n; k++)//把k当中转点,注意是放在i,j循环的外面
    {
        for (i = 1; i <= n; i++)//行,列
        {
            if (i == k)
                continue;
            for (j = 1; j <= n; j++)
            {
                if (j == k)
                    continue;

                if (i == j)
                    continue;

                if (board[i][k] != INT_MAX && board[k][j] != INT_MAX)
                    board[i][j] = min(board[i][j], board[i][k] + board[k][j]);

            }
        }
    }

    for (i = 1; i <= n; i++)
    {
        for (j = 1; j <= n; j++)
        {
            cout << board[i][j] << ' ';
        }
        cout << endl;
    }
    return 0;
}

恭喜你啦,今天又进步了一点点~

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑子不好的小菜鸟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值