找出最长的神奇子序列
题目链接
题目描述
# 问题描述
小明是一个中学生,今天他刚刚学习了数列。他在纸上写了一个长度为 `n` 的正整数序列,$a_0,a_1,\ldots,a_{n-1}$。这个数列里面只有 1 和 0,我们将 1 和 0 没有重复跟随并且至少由 3 个数组成的数列的数列称之为「神奇数列」。比如 `10101` 是一个神奇数列,`1011` 不是一个神奇数列。他想知道这个序列里面最长的「神奇数列」是哪个,你可以帮帮他吗?
## 输入格式
- 一行连续的数 `s`,只有 `0` 和 `1`
## 输出格式
- 一行数
## 输入样例
0101011101
## 输出样例
010101
## 数据范围
- $1 < s.length \leq 5 \times 10^4$
题目思路
这道题如果我们从字符串的角度可能有点难以解决,但是从动态规划的角度来看的话,非常的简单。
在正式开始做之前,可以先判断一下字符串的长度时候比3小,若是比3小,根据定义是不可能构成神奇序列的,直接返回空字符串即可。
if(inp.length() < 3){
return "";
}
首先,我们需要确定dp数组的含义,我们定义一个dp[inp.length()][2]的数组表示以第(i-1)个数为j结尾的神奇序列的长度。
//dp数组:以第i-1个数为j结尾的神奇序列的长度
int[][] dp = new int[inp.length()][2];
接着确定递推公式,根据神奇序列的定义,前面为0的话,后面就要为1;前面为1的话,后面就要为0。所以当 i 索引位置为 0时,dp[i][0] = dp[i-1][1] + 1,当i 索引位置为 1时 ,dp[i][1] = dp[i-1][0] + 1。
if(inp.charAt(i) == '0'){
dp[i][0] = dp[i-1][1]+1;
}else{
dp[i][1] = dp[i-1][0]+1;
}
确定完递推公式后,我们就要来初始化dp数组,很简单,根据字符串的第一个数字是0还是1,将对应的位置设置为1就可以了。
//初始化dp数组
dp[0][0] = inp.charAt(0) == '0'?1:0;
dp[0][1] = inp.charAt(0) == '1'?1:0;
接着在定义两个变量来存储最长的长度和最长神奇序列的起始索引,然后我们就可以开始根据递推公式进行遍历了。
//记录最长的长度
int maxLength = 0;
//记录最长的神奇序列索引
int index = 0;
for(int i = 1;i < inp.length();i++){
if(inp.charAt(i) == '0'){
dp[i][0] = dp[i-1][1]+1;
}else{
dp[i][1] = dp[i-1][0]+1;
}
if(dp[i][0] >= 3 && dp[i][0] > maxLength){
maxLength = dp[i][0];
index = i - maxLength + 1;
}
if(dp[i][1] >= 3 && dp[i][1] > maxLength){
maxLength = dp[i][1];
index = i - maxLength + 1;
}
}
遍历完成之后,根据起始索引和长度截取对应的字符串返回即可。
return inp.substring(index,index + maxLength);
题目答案
public class Main {
public static String solution(String inp) {
// Edit your code here
if(inp.length() < 3){
return "";
}
//dp数组:以第i-1个数为j结尾的神奇序列的长度
int[][] dp = new int[inp.length()][2];
//记录最长的长度
int maxLength = 0;
//记录最长的神奇序列索引
int index = 0;
//初始化dp数组
dp[0][0] = inp.charAt(0) == '0'?1:0;
dp[0][1] = inp.charAt(0) == '1'?1:0;
for(int i = 1;i < inp.length();i++){
if(inp.charAt(i) == '0'){
dp[i][0] = dp[i-1][1]+1;
}else{
dp[i][1] = dp[i-1][0]+1;
}
if(dp[i][0] >= 3 && dp[i][0] > maxLength){
maxLength = dp[i][0];
index = i - maxLength + 1;
}
if(dp[i][1] >= 3 && dp[i][1] > maxLength){
maxLength = dp[i][1];
index = i - maxLength + 1;
}
}
return inp.substring(index,index + maxLength);
}
public static void main(String[] args) {
// Add your test cases here
System.out.println(solution("0101011101").equals("010101"));
}
}
总结
这道题使用动态规划来做十分简单,递推公式根据定义就可以写出来,我就不过多赘述了。祝大家刷题愉快~