public class Day18 { } //给你二叉搜索树的根节点 root ,同时给定最小边界low 和最大边界 high。通过修剪二叉搜索树,使得所有节点的值在[low, high]中。 // 修剪树 不应该 改变保留在树中的元素的相对结构 (即,如果没有被移除,原有的父代子代关系都应当保留)。 可以证明,存在 唯一的答案 。 //所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变。 public TreeNode trimBST(TreeNode root, int low, int high) { //如果结点的值小于 low,那么说明该结点及它的左子树都不符合要求,我们返回对它的右结点进行修剪后的结果; // 如果结点的值大于 high,那么说明该结点及它的右子树都不符合要求,我们返回对它的左子树进行修剪后的结果; if(root==null) return null; if(root.val<low) { return trimBST(root.right,low,high);//深度遍历 看看右孩子是否有满足要求的返回 } if(root.val>high){ return trimBST(root.left,low,high); } root.left=trimBST(root.left,low,high); root.right=trimBST(root.right,low,high); return root; } //给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 //平衡二叉搜索树。 public TreeNode sortedArrayToBST(int[] nums) { return Traversal(nums,0,nums.length-1); } public TreeNode Traversal(int[] nums ,int begin,int end){ //升序排列的数组就是二叉树的中序排列 然后不断取数组的中间节点 即为二叉树的根节点 递归返回 if(begin>end) return null; int middle=(begin+end)/2; TreeNode root=new TreeNode(nums[middle]); root.left=Traversal(nums,begin,middle-1); root.right=Traversal(nums,middle+1,end); return root; } // 给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree), // 使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。 // 提醒一下,二叉搜索树满足下列约束条件: // 节点的左子树仅包含键 小于 节点键的节点。 // 节点的右子树仅包含键 大于 节点键的节点。 // 左右子树也必须是二叉搜索树。 int pre=0; public TreeNode convertBST(TreeNode root) { Traversal(root); return root; } public void Traversal(TreeNode cur){ if(cur==null) return; Traversal(cur.right);//右 cur.val+=pre; pre=cur.val;//中 Traversal(cur.left);//左 } //最大的值在最右边的叶子节点,然后通过右中左顺序依次往前累加 }
代码随想录|669. 修剪二叉搜索树 108.将有序数组转换为二叉搜索树 538.把二叉搜索树转换为累加树
最新推荐文章于 2024-11-01 18:51:26 发布