计算残差和残差平方和(使用R语言)

81 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用R语言计算残差和残差平方和,以评估回归模型的拟合程度。通过创建示例数据集,用lm()函数拟合线性回归模型,接着使用residuals()函数计算残差,sum()函数求残差平方和,展示了具体步骤和结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算残差和残差平方和(使用R语言)

在统计学和回归分析中,残差是指实际观测值与回归模型预测值之间的差异。计算残差和残差平方和是评估回归模型拟合程度和误差大小的一种常见方法。在本文中,我们将使用R语言来计算残差和残差平方和。

首先,我们需要准备数据。假设我们有两个变量X和Y,其中X是自变量,Y是因变量。我们将使用lm()函数来拟合一个线性回归模型,并计算其残差和残差平方和。

# 创建示例数据
X <- c(1, 2, 3, 4, 5)
Y <- c(3, 5, 7, 9, 11)

# 拟合线性回归模型
model <- lm(Y ~ X)

# 计算残差
residuals <- residuals(model)

# 计算残差平方和
residual_sum_of_squares <- sum(residuals^2)

# 打印结果
print("残差:")
print(residuals)

print("残差平方和:")
print(residual_sum_of_squares)

在上面的代码中,我们首先创建了一个示例数据集,其中X和Y是长度为5的数值向量。然后,我们使用lm()函数拟合了一个线性回归模型,其中Y是因变量,X是自变量。

接下来,我们使用residuals()函数计算了模型的残差,并将结

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值