ISBN号码
描述
每一本正式出版的图书都有一个ISBN号码与之对应,ISBN码包括9位数字、1位识别码和3位分隔符,其规定格式如“x-xxx-xxxxx-x”,其中符号“-”是分隔符(键盘上的减号),最后一位是识别码,例如0-670-82162-4就是一个标准的ISBN码。ISBN码的首位数字表示书籍的出版语言,例如0代表英语;第一个分隔符“-”之后的三位数字代表出版社,例如670代表维京出版社;第二个分隔之后的五位数字代表该书在出版社的编号;最后一位为识别码。
识别码的计算方法如下:
首位数字乘以1加上次位数字乘以2……以此类推,用所得的结果mod 11,所得的余数即为识别码,如果余数为10,则识别码为大写字母X。例如ISBN号码0-670-82162-4中的识别码4是这样得到的:对067082162这9个数字,从左至右,分别乘以1,2,…,9,再求和,即0×1+6×2+……+2×9=158,然后取158 mod 11的结果4作为识别码。
你的任务是编写程序判断输入的ISBN号码中识别码是否正确,如果正确,则仅输出“Right”;如果错误,则输出你认为是正确的ISBN号码。
输入描述:
只有一行,是一个字符序列,表示一本书的ISBN号码(保证输入符合ISBN号码的格式要求)。
输出描述:
共一行,假如输入的ISBN号码的识别码正确,那么输出“Right”,否则,按照规定的格式,输出正确的ISBN号码(包括分隔符“-”)。
直接上去模拟就可以了
#define _CRT_SECURE_NO_WARNINGS 1
#include <iostream>
#include <string>
#include <algorithm>
using namespace std;
int a, b, c;
char d;
string s;
int main()
{
scanf("%d-%d-%d-%c", &a, &b, &c, &d);
s += to_string(a) + to_string(b) + to_string(c);
int ans = 0;
for (int i = 1; i <= 9; ++i)
{
ans += i * (s[i - 1] - '0');
}
if (ans % 11 == 10)
{
if (d == 'X')cout << "Right" << endl;
else cout << to_string(a) + "-" + to_string(b) + "-" + to_string(c) + "-" + 'X' << endl;
}
else {
if (ans % 11 + '0' == d)
cout << "Right" << endl;
else cout<<to_string(a) + "-" + to_string(b) + "-" + to_string(c) + "-" + to_string(ans % 11) << endl;
}
return 0;
}
kotori和迷宫
kotori在一个n*m迷宫里,迷宫的最外层被岩浆淹没,无法涉足,迷宫内有k个出口。kotori只能上下左右四个方向移动。她想知道有多少出口是她能到达的,最近的出口离她有多远?
输入描述:
第一行为两个整数n和m,代表迷宫的行和列数 (1≤n,m≤30)
后面紧跟着n行长度为m的字符串来描述迷宫。'k'代表kotori开始的位置,'.'代表道路,'*'代表墙壁,'e'代表出口。保证输入合法。
输出描述:
若有出口可以抵达,则输出2个整数,第一个代表kotori可选择的出口的数量,第二个代表kotori到最近的出口的步数。(注意,kotori到达出口一定会离开迷宫)
若没有出口可以抵达,则输出-1。
BFS
#include <iostream>
#include <cstring>
#include <queue>
using namespace std;
const int N = 35;
int x1, y1; // 标记起点位置
int n, m;
char arr[N][N];
int dist[N][N];
queue<pair<int, int>> q;
int dx[4] = { 0, 0, 1, -1 };
int dy[4] = { 1, -1, 0, 0 };
void bfs()
{
memset(dist, -1, sizeof dist);
dist[x1][y1] = 0;
q.push({ x1, y1 });
while (!q.empty())
{
auto &[x2, y2] = q.front();
q.pop();
for (int i = 0; i < 4; i++)
{
int a = x2 + dx[i], b = y2 + dy[i];
if (a >= 1 && a <= n && b >= 1 && b <= m && dist[a][b] == -1 &&
arr[a][b] != '*')
{
dist[a][b] = dist[x2][y2] + 1;
if (arr[a][b] != 'e')
{
q.push({ a, b });
}
}
}
}
}
int main()
{
cin >> n >> m;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
cin >> arr[i][j];
if (arr[i][j] == 'k')
{
x1 = i, y1 = j;
}
}
}
bfs();
int count = 0, ret = 1e9;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
if (arr[i][j] == 'e' && dist[i][j] != -1)
{
count++;
ret = min(ret, dist[i][j]);
}
}
}
if (count == 0) cout << -1 << endl;
else cout << count << " " << ret << endl;
return 0;
}
矩阵最长递增路径
描述
给定一个 n 行 m 列矩阵 matrix ,矩阵内所有数均为非负整数。 你需要在矩阵中找到一条最长路径,使这条路径上的元素是递增的。并输出这条最长路径的长度。
这个路径必须满足以下条件:
-
对于每个单元格,你可以往上,下,左,右四个方向移动。 你不能在对角线方向上移动或移动到边界外。
-
你不能走重复的单元格。即每个格子最多只能走一次。
数据范围:1≤n,m≤10001≤n,m≤1000,0≤matrix[i][j]≤10000≤matri**x[i][j]≤1000
进阶:空间复杂度 O(nm)O(n**m) ,时间复杂度 O(nm)O(n**m)
例如:当输入为[[1,2,3],[4,5,6],[7,8,9]]时,对应的输出为5,
其中的一条最长递增路径如下图所示:
首先,非常逆天,没用记忆化搜索居然可以通过
class Solution {
int n,m;
int dx[4]{1,-1,0,0},dy[4]{0,0,1,-1};
int dfs(vector<vector<int> >& matrix,int i,int j)
{
int ans = 1;
for(int k = 0;k<4;++k)
{
int x = i+dx[k],y=j+dy[k];
if(x>=0&&x<n&&y>=0&&y<m&&matrix[x][y] > matrix[i][j])
{
ans = max(ans,dfs(matrix,x,y)+1);
}
}
return ans;
}
public:
int solve(vector<vector<int> >& matrix) {
// write code here
n = matrix.size(),m = matrix[0].size();
int ans = 1;
for(int i = 0;i<n;++i)
{
for(int j = 0;j<m;++j)
{
ans = max(ans,dfs(matrix,i,j));
}
}
return ans;
}
};
记忆化搜索
class Solution {
int n,m;
int dx[4]{1,-1,0,0},dy[4]{0,0,1,-1};
int memo[1010][1010];
int dfs(vector<vector<int> >& matrix,int i,int j)
{
if(memo[i][j]!=-1)return memo[i][j];
int ans = 1;
for(int k = 0;k<4;++k)
{
int x = i+dx[k],y=j+dy[k];
if(x>=0&&x<n&&y>=0&&y<m&&matrix[x][y] > matrix[i][j])
{
ans = max(ans,dfs(matrix,x,y)+1);
}
}
return memo[i][j]=ans;
}
public:
int solve(vector<vector<int> >& matrix) {
// write code here
memset(memo,-1,sizeof memo);
n = matrix.size(),m = matrix[0].size();
int ans = 1;
for(int i = 0;i<n;++i)
{
for(int j = 0;j<m;++j)
{
ans = max(ans,dfs(matrix,i,j));
}
}
return ans;
}
};