1.奇数位丢失
描述
对于一个由 0…n 的所有数按升序组成的序列,我们要进行一些筛选,每次我们丢弃去当前所有数字中第奇数位个的数。重复这一过程直到最后剩下一个数。请求出最后剩下的数字。
数据范围: 1≤n≤1000 1≤n≤1000 ,本题有多组输入
输入描述:
每组数据一行一个数字,为题目中的n(n小于等于1000)。
输出描述:
一行输出最后剩下的数字。
方法一、 非常没有技术含量的使用队列来模拟这个过程
#include <iostream>
#include <queue>
using namespace std;
int n;
queue<int>q;
int main()
{
cin >> n;
for (int i = 0; i <= n; ++i)q.push(i);
int sz = n + 1;
while (sz != 1)
{
for (int i = 1; i <= sz; ++i)
{
if (i % 2==0)q.push(q.front());
q.pop();
}
sz = sz / 2;
}
cout << q.front() << endl;
return 0;
}
方法二、
#include <iostream>
using namespace std;
int n;
int main()
{
while (cin >> n)
{
int ret = 1;
while (ret - 1 <= n)ret <<= 1;
cout << ret / 2 - 1 << endl;
}
return 0;
}
2.求和
输入两个整数 n 和 m,从数列1,2,3…n 中随意取几个数,使其和等于 m,要求将其中所有的可能组合列出来。
输入描述:
输入两个正整数,n和m。
其中n,m均不大于10
输出描述:
按每个组合的字典序排列输出,每行输出一种组合。
比较常规的思路,考虑每个位置选或者不选,同时可以加一个剪枝
#include <iostream>
#include <vector>
using namespace std;
int n, k;
void dfs(vector<int>& result, const vector<int>& v,int u,int sum)
{
if(u == n+1)
{
if (sum == k)
{
for (auto& x : result)
cout << x << ' ';
cout << '\n';
return;
}
}
else if (sum > k)return;
else {
result.push_back(v[u]);
dfs(result, v, u + 1, sum + v[u]);//选
result.pop_back();
dfs(result, v, u + 1, sum);//不选
}
}
int main()
{
cin >> n >> k;
vector<int>v(n + 1);
for (int i = 0; i <= n; ++i)v[i] = i;
vector<int>result;
dfs(result, v,1,0);
return 0;
}
3.计算字符串的编辑距离
描述
Levenshtein 距离,又称编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。编辑距离的算法是首先由俄国科学家 Levenshtein 提出的,故又叫 Levenshtein Distance 。
例如:
字符串A: abcdefg
字符串B: abcdef
通过增加或是删掉字符 ”g” 的方式达到目的。这两种方案都需要一次操作。把这个操作所需要的次数定义为两个字符串的距离。
要求:
给定任意两个字符串,写出一个算法计算它们的编辑距离。
数据范围:给定的字符串长度满足 1≤len(str)≤1000 1≤len(str)≤1000
输入描述:
每组用例一共2行,为输入的两个字符串
输出描述:
每组用例输出一行,代表字符串的距离
#include <iostream>
#include <string>
using namespace std;
string a, b;
const int N = 1010;
int dp[N][N];//dp[i][j]表示的是a中[1,i]区间以及b中[1,j]区间内的编辑距离
/*
状态转移方程:
a[i] == b[j] dp[i][j] = dp[i-1][j-1]
dp[i][j] 删 增 换
a[i] != b[j] dp[i][j] = min({dp[i-1][j],dp[i][j-1],dp[i-1][j-1]})+1
*/
int main()
{
cin >> a >> b;
int n = a.size(), m = b.size();
for (int i = 0; i <= n; ++i)
{
dp[i][0] = i;
}
for (int j = 0; j <= m; ++j)
{
dp[0][j] = j;
}
for (int i = 1; i <= n; ++i)
{
for (int j = 1; j <= m; ++j)
{
if (a[i - 1] == b[i - 1])
dp[i][j] = dp[i - 1][j - 1];
else
dp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
}
}
cout << dp[n][m] << endl;
return 0;
}