笔试强训day35

1.奇数位丢失

描述

对于一个由 0…n 的所有数按升序组成的序列,我们要进行一些筛选,每次我们丢弃去当前所有数字中第奇数位个的数。重复这一过程直到最后剩下一个数。请求出最后剩下的数字。

数据范围: 1≤n≤1000 1≤n≤1000 ,本题有多组输入

输入描述:

每组数据一行一个数字,为题目中的n(n小于等于1000)。

输出描述:

一行输出最后剩下的数字。

方法一、 非常没有技术含量的使用队列来模拟这个过程

#include <iostream>
#include <queue>

using namespace std;
int n;
queue<int>q;

int main()
{
	cin >> n;
	for (int i = 0; i <= n; ++i)q.push(i);
	int sz = n + 1;
	while (sz != 1)
	{
		for (int i = 1; i <= sz; ++i)
		{
			if (i % 2==0)q.push(q.front());
			q.pop();
		}
		sz = sz / 2;
	}
	cout << q.front() << endl;
	return 0;
}

方法二、

#include <iostream>

using namespace std;
int n;

int main()
{
	while (cin >> n)
	{
		int ret = 1;
		while (ret - 1 <= n)ret <<= 1;
		cout << ret / 2 - 1 << endl;
	}

	return 0;
}

2.求和

输入两个整数 n 和 m,从数列1,2,3…n 中随意取几个数,使其和等于 m,要求将其中所有的可能组合列出来。

输入描述:
输入两个正整数,n和m。
其中n,m均不大于10
输出描述:
按每个组合的字典序排列输出,每行输出一种组合。

比较常规的思路,考虑每个位置选或者不选,同时可以加一个剪枝

#include <iostream>
#include <vector>

using namespace std;
int n, k;

void dfs(vector<int>& result, const vector<int>& v,int u,int sum)
{
	if(u == n+1)
	{
		if (sum == k)
		{
			for (auto& x : result)
				cout << x << ' ';
			cout << '\n';
			return;
		}
	}
	else if (sum > k)return;
	else {
		result.push_back(v[u]);
		dfs(result, v, u + 1, sum + v[u]);//选
		result.pop_back();

		dfs(result, v, u + 1, sum);//不选
	}
}
int main()
{
	cin >> n >> k;
	vector<int>v(n + 1);
	for (int i = 0; i <= n; ++i)v[i] = i;
	vector<int>result;
	dfs(result, v,1,0);

	return 0;
}

3.计算字符串的编辑距离

描述

Levenshtein 距离,又称编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。编辑距离的算法是首先由俄国科学家 Levenshtein 提出的,故又叫 Levenshtein Distance 。

例如:

字符串A: abcdefg

字符串B: abcdef

通过增加或是删掉字符 ”g” 的方式达到目的。这两种方案都需要一次操作。把这个操作所需要的次数定义为两个字符串的距离。

要求:

给定任意两个字符串,写出一个算法计算它们的编辑距离。

数据范围:给定的字符串长度满足 1≤len(str)≤1000 1≤len(str)≤1000

输入描述:

每组用例一共2行,为输入的两个字符串

输出描述:

每组用例输出一行,代表字符串的距离

#include <iostream>
#include <string>

using namespace std;
string a, b;
const int N = 1010;
int dp[N][N];//dp[i][j]表示的是a中[1,i]区间以及b中[1,j]区间内的编辑距离
/*
状态转移方程:
        a[i] == b[j] dp[i][j] = dp[i-1][j-1]
dp[i][j]                                删         增       换
        a[i] != b[j] dp[i][j] = min({dp[i-1][j],dp[i][j-1],dp[i-1][j-1]})+1
*/
int main()
{
    cin >> a >> b;
    int n = a.size(), m = b.size();
    for (int i = 0; i <= n; ++i)
    {
        dp[i][0] = i;
    }
    for (int j = 0; j <= m; ++j)
    {
        dp[0][j] = j;
    }
    for (int i = 1; i <= n; ++i)
    {
        for (int j = 1; j <= m; ++j)
        {
            if (a[i - 1] == b[i - 1])
                dp[i][j] = dp[i - 1][j - 1];
            else
                dp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
        }
    }
    cout << dp[n][m] << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值