5篇1章5节:二分类变量的Meta分析模型,敏感性分析和亚组分析,绘制森林图

敏感性分析和亚组分析在Meta分析中起着至关重要的作用,它们有助于评估研究结果的稳健性和异质性的来源。本文将详细讨论这两种分析方法,结合R语言中的metainf()metabin()函数来阐述如何进行这些分析,并通过实际数据集示例加以说明。

一、前文回顾

1、公式构建

Fleiss93数据集来自Meta扩展包,包含了20世纪70年代至80年代进行的七个关于阿司匹林预防心肌梗死后死亡的临床试验。 

library(meta)
data(Fleiss93)

构建Meta公式 

Met.mod.1 <- metabin(event.e = event.e, 
                     n.e = n.e, 
                     event.c = event.c, 
                     n.c = n.c, 
                     data = Fleiss93, 
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R科学与人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值