解读线性回归模型的结果对于数据分析和统计建模是至关重要的一步。R语言通过一系列函数和工具,帮助用户对模型进行评估和解读。在这篇文章中,我们将详细讲解如何解读线性回归模型的结果,结合具体实例,逐步深入探讨每个指标的含义,并介绍其他有用的R函数来支持模型评估。
一、简单构建模型
R语言中的lm()
函数是实现线性回归分析的主要工具,而summary()
函数则用于生成详细的模型结果,包括系数、残差、标准误差、t统计量、p值等。本文通过逐步解释这些输出,帮助读者更好地理解线性回归模型的分析结果。
我们将以MASS扩展的一个birthwt
数据集为例,展示如何使用这些函数分析母亲年龄(age
)对婴儿出生体重(grams
)的影响,并逐步解读 summary() 函数的输出。
# 加载MASS包,其中包含了birthwt数据集
library(MASS)
# 加载birthwt数据集,该数据集包含有关婴儿出生体重及其相关因素的信息
data(birthwt)
# 复制birthwt数据集为birthwttabe