我们将探讨机器学习在临床预测中的多种场景,主要包括疾病发生风险、疾病进展风险以及疾病预后的预测能力。此外,我们还介绍构建临床预测模型的常规步骤,包括数据采集与预处理、特征选择与算法选择、模型构建与训练、模型验证与性能评估。特别地,本文还将以高血压预测模型的构建为例,帮助大家模拟、理解和学习。
一、机器学习在临床预测模型的应用场景
1、预测疾病的发生风险
疾病风险预测模型通常基于患者多方面的临床信息,包括年龄、生活方式、家族病史、既往病史、实验室检查指标等。模型通过量化这些因素的影响,计算出患者在未来一段时间内患某种疾病的概率。此类模型在心血管病、糖尿病、癌症等慢性病的预测上具有显著应用价值,帮助医生为高风险人群制定个性化的健康干预方案。
急性冠脉综合征是一种严重的疾病,其原因是供需失衡,满足心肌代谢需求。在急诊科,医生们很难根据传统的心电图检查和实验室检查决定是否要住院、随访或出院。Berikol<