在机器学习和深度学习中,数据集的合理切分对模型的构建和评估至关重要。将数据划分为训练集、验证集和测试集,不仅可以帮助模型更好地进行学习,还能在模型优化和评估阶段提升模型的性能。本文,我们将逐步探索随机抽样、等比抽样方法,以及三份数据集的划分策略,通过具体代码示例和逐步注释,帮助您掌握在实际项目中合理切分数据集的技巧。
一、随机抽样方法
在R语言中,sample()
函数是实现随机抽样的基本工具。随机抽样可以帮助我们从数据集中随机选择样本,从而构建训练集和测试集。下面是该函数的常用参数:
x
:待抽样的数据向量(可以是数据框的行索引或其他类型的向量)。size
:需要抽样的样本数量。replace
:是否允许重复抽样。默认值为FALSE
,表示不放回抽样;如果设置为TRUE
,则允许样本重复。prob