7篇1章4节:采用随机抽样法和等比抽样法对数据集进行二份及三份的划分

在机器学习和深度学习中,数据集的合理切分对模型的构建和评估至关重要。将数据划分为训练集、验证集和测试集,不仅可以帮助模型更好地进行学习,还能在模型优化和评估阶段提升模型的性能。本文,我们将逐步探索随机抽样、等比抽样方法,以及三份数据集的划分策略,通过具体代码示例和逐步注释,帮助您掌握在实际项目中合理切分数据集的技巧。

一、随机抽样方法

在R语言中,sample()函数是实现随机抽样的基本工具。随机抽样可以帮助我们从数据集中随机选择样本,从而构建训练集和测试集。下面是该函数的常用参数:

  • x:待抽样的数据向量(可以是数据框的行索引或其他类型的向量)。
  • size:需要抽样的样本数量。
  • replace:是否允许重复抽样。默认值为FALSE,表示不放回抽样;如果设置为TRUE,则允许样本重复。
  • prob
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R科学与人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值