9篇1章10节:如何解决 NHANES 数据合并所遇原表差异问题

在公共健康研究中,NHANES数据为研究者提供了宝贵的信息来源。然而,由于数据覆盖多个周期且表结构经常变化,合并多周期数据时常会因列名差异、字段缺失等问题导致错误,从而增加了数据清洗的复杂性。本文将介绍如何有效准备 NHANES 数据,分析列名差异的根本原因,并通过自定义函数和 R 包工具函数提供灵活而高效的解决方案,最终确保我们能提取到目标变量,为后续分析打下坚实基础。

如何高效合并NHANES数据

《2003–2008年美国孕妇血铅和汞水平分析》(Blood Lead and Mercury Levels in Pregnant Women in the United States, 2003–2008)是基于NHANES数据揭示了孕妇血铅和血汞水平的整体情况及其在人群中的差异。结果显示,孕妇的血铅和汞水平普遍低于非孕妇,且血铅水平通常低于5 µg/dL的干预标准。血汞水平随年龄增加而升高,而血铅水平无明显年龄变化。无妊娠经历的孕妇血汞水平较高,但血铅水平较低。教育水平对血铅水平有显著影响,学历较低者血铅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R科学与人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值