抽样方法在统计学研究和数据科学中具有重要的地位,尤其是在医学和生物统计领域。选择合适的抽样方法直接影响研究结果的可靠性和有效性。在实践中,抽样方法通常可以分为两大类:概率抽样和非概率抽样。这两种方法在其应用和适用范围上存在显著差异,各有其优缺点。
一、概率抽样和非概率抽样
1、概率抽样
概率抽样(Probability sampling,随机抽样)是指通过某种已知的随机化机制,从总群体中随机抽取样本单元。每个单元被抽中的概率是已知且可以计算的。概率抽样的关键特性是,它可以使得样本的推断结果能够广泛地推广到总体,从而提高推断结果的可靠性。在进行统计推断(如假设检验、估计总体参数)时,概率抽样具有显著优势。
简单随机抽样:每个个体在总体中都有相等的机会被选中。这是最基础的概率抽样方法,常常通过随机数生成器来实现。简单随机抽样适用于样本较小,且总群体不大且易于获取的情况。
分层抽样: