7篇2章4节:概率抽样和三种非概率抽样的实现

抽样方法在统计学研究和数据科学中具有重要的地位,尤其是在医学和生物统计领域。选择合适的抽样方法直接影响研究结果的可靠性和有效性。在实践中,抽样方法通常可以分为两大类:概率抽样和非概率抽样。这两种方法在其应用和适用范围上存在显著差异,各有其优缺点。

一、概率抽样和非概率抽样

1、概率抽样

概率抽样(Probability sampling,随机抽样)是指通过某种已知的随机化机制,从总群体中随机抽取样本单元。每个单元被抽中的概率是已知且可以计算的。概率抽样的关键特性是,它可以使得样本的推断结果能够广泛地推广到总体,从而提高推断结果的可靠性。在进行统计推断(如假设检验、估计总体参数)时,概率抽样具有显著优势。

简单随机抽样:每个个体在总体中都有相等的机会被选中。这是最基础的概率抽样方法,常常通过随机数生成器来实现。简单随机抽样适用于样本较小,且总群体不大且易于获取的情况。

分层抽样:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R科学与人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值