在机器学习与数据挖掘中,构建高质量的预测模型往往离不开特征工程。特征工程包括特征提取、特征转换、特征构造以及特征选择,而其中变量子集选择作为减少模型复杂度、缓解过拟合问题的重要环节,已成为众多模型优化过程的关键步骤。本文将深入探讨特征工程中变量子集选择的嵌入式方法,重点讲解基于正则化技术的L1正则化(LASSO)及其在R语言中的应用,同时对其他相关方法进行对比和讨论。
一、嵌入式方法概述
想象一下,你正在处理一个大型数据集,并且想要训练一个机器学习算法。挑战在于决定从众多变量中选取哪些特征,以构建一个有效的模型。这就是特征选择发挥作用的地方,它能让我们从繁杂的数据中筛选出有用信息,创建出更具可解释性和稳健性的模型。特征选择是指从数据集中选择一组特征来训练机器学习算法。特征选择过程的目的是减少特征的数量,这会提升模型的可解释性,并使模型更具鲁棒性。特征选择方法可以分为三类:过滤法、包装法和嵌入式方法。
嵌入式方法(Embedded Methods)是一类在模型训练过程中