在全球公共卫生领域,GBD 数据库以其全面、系统的数据集和多维度分析框架,成为评估疾病负担与健康差异的重要工具。与此同时,社会发展指数(SDI, Socio-demographic Index)作为衡量地区社会经济与人口学特征的综合指标,可帮助研究者从宏观层面识别高血压等慢性病在不同发展阶段的分布格局与趋势特征。本节首先概述如何基于 GBD 数据库制定科学合理的分析策略,包括指标选择、时空分层与模型构建等关键步骤;继而聚焦 SDI 指数的定义、构成及其在健康负担研究中的解读价值;最后,以国内外高血压负担为切入,示范如何将 GBD 数据与 SDI 水平进行交叉分析,揭示社会经济发展与高血压发病率、死亡率及 DALYs(残疾调整寿命年)之间的复杂关联。
一、GBD数据库的结构与核心变量
GBD数据库背后的研究团队由数百个国家和地区的学者、机构共同参与,由美国华盛顿大学健康指标与评估研究所(IHME)主导,每年发布更新数据,涉及近300个疾病与伤害、近90个风险因素,覆盖200多个国家和地区。GBD数据已被