2篇7章1节:认识广义加性回归模型

广义加性模型(GAM),也称为广义加性回归模型,它是一种介于完全参数模型和非参数模型之间的灵活回归框架。它将原本需要用一条直线去刻画的变量关系,拆分为若干条可弯曲的曲线,每一条曲线对应一个自变量,通过“平滑”的方式让数据自然贴合这些曲线。这样一来,当自变量与因变量之间存在明显的弯折或拐点时,模型能够自动捕捉到这种非线性变化,而不必事先假设具体的函数形式。在实际操作中,广义加性模型既保留了线性回归简洁明了的特点,又引入了非参数方法的灵活性。

一、回顾多重线性回归模型和广义线性模型

1、多重线性回归模型

在统计学研究和应用中,当研究对象的结果变量为连续型数值时,我们常常希望探究这一结果变量与若干影响因素之间的数量关系。多重线性回归模型(Multiple Linear Regression Model,​​​​​​​MLR)便是在此背景下诞生并广泛应用的一种经典方法。在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R科学与人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值