广义加性模型(GAM),也称为广义加性回归模型,它是一种介于完全参数模型和非参数模型之间的灵活回归框架。它将原本需要用一条直线去刻画的变量关系,拆分为若干条可弯曲的曲线,每一条曲线对应一个自变量,通过“平滑”的方式让数据自然贴合这些曲线。这样一来,当自变量与因变量之间存在明显的弯折或拐点时,模型能够自动捕捉到这种非线性变化,而不必事先假设具体的函数形式。在实际操作中,广义加性模型既保留了线性回归简洁明了的特点,又引入了非参数方法的灵活性。
一、回顾多重线性回归模型和广义线性模型
1、多重线性回归模型
在统计学研究和应用中,当研究对象的结果变量为连续型数值时,我们常常希望探究这一结果变量与若干影响因素之间的数量关系。多重线性回归模型(Multiple Linear Regression Model,MLR)便是在此背景下诞生并广泛应用的一种经典方法。在