2篇7章3节:广义加性回归模型的可视化和模型的诊断

在现代统计建模与数据科学中,非线性建模方法逐渐取代了传统线性模型在许多实际问题中的地位。广义加性模型(Generalized Additive Model, GAM)作为一种灵活、解释性强的非线性回归方法,越来越受到研究人员的青睐。本文将通过一个完整的建模流程,结合 R 语言中 mgcv 包的使用,系统介绍如何使用模拟数据进行 GAM 建模、结果可视化与模型诊断,并介绍一种分阶段建模的技巧以提高建模灵活性。

一、广义加性回归模型的可视化

我们还是使用前文的数据进行构建模型。

# 加载 mgcv 包,这是 R 中用于广义加性模型(GAM)建模和可视化的主要工具包
library(mgcv)

# 设置随机数种子,使得每次运行代码时生成的随机数据相同,确保结果可复现
set.seed(2)

# 使用 mgcv 包提供的 gamSim() 函数生成模拟数据
# 参数说明:
# 1: 表示选择内置的第一种数据生成模型(包含四个解释变量 x0, x1, x2, x3 和一个响应变量 y)
# n = 400: 生成 400 个观测点
# d
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R科学与人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值