全面学习计划:洋葱尺寸测量图像分割检测

1.背景意义

研究背景与意义

洋葱作为一种重要的农作物,其在全球范围内的种植和消费量巨大。随着农业现代化的推进,如何高效、准确地测量洋葱的尺寸,以便于在市场上进行定价和销售,成为了一个亟待解决的问题。传统的洋葱尺寸测量方法通常依赖人工操作,不仅效率低下,而且容易受到人为因素的影响,导致测量结果的不准确。因此,开发一种基于计算机视觉的自动化洋葱尺寸测量系统显得尤为重要。

近年来,深度学习技术的迅猛发展为图像处理领域带来了新的机遇。YOLO(You Only Look Once)系列模型因其快速且准确的目标检测能力,已广泛应用于各种计算机视觉任务。YOLOv11作为该系列的最新版本,具有更强的特征提取能力和更高的检测精度,适合用于复杂场景下的物体检测与分割任务。本研究旨在基于改进的YOLOv11模型,构建一个专门针对洋葱尺寸测量的图像分割检测系统。

本项目所使用的数据集包含4849张图像,涵盖了三种类别的洋葱:红洋葱、参考物体和黄洋葱。这些数据经过精心标注,确保了模型训练的高质量。通过对数据集的深入分析与处理,结合YOLOv11的强大功能,我们期望能够实现对洋葱尺寸的精准测量,从而为农业生产提供科学依据,提升农产品的市场竞争力。此外,该系统的成功实施将为其他农作物的尺寸测量提供参考,推动农业智能化的发展。

综上所述,本研究不仅具有重要的理论意义,还将对实际农业生产和市场流通产生积极影响,为实现农业现代化和智能化提供有力支持。

2.视频效果

2.1 视频效果

3.图片效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

项目涉及的源码数据来源链接**

注意:本项目提供训练的数据集和训练教程,由于版本持续更新,暂不提供权重文件(best.pt),请按照6.训练教程进行训练后实现上图演示的效果。

4.数据集信息

4.1 本项目数据集类别数&类别名

nc: 3
names: [‘Red-Onion’, ‘Reference-Object’, ‘Yellow-Onion’]

该项目为【图像分割】数据集,请在【训练教程和Web端加载模型教程(第三步)】这一步的时候按照【图像分割】部分的教程来训练

4.2 本项目数据集信息介绍

本项目数据集信息介绍

本项目旨在改进YOLOv11的洋葱尺寸测量图像分割检测系统,所使用的数据集专注于“洋葱分割”这一主题。该数据集包含三种主要类别,分别为红洋葱、参考物体和黄洋葱。这些类别的选择不仅反映了洋葱的多样性,还为模型的训练提供了丰富的样本,使其能够在不同的环境和条件下进行有效的检测和分割。

在数据集的构建过程中,我们收集了大量的洋葱图像,确保每一类别的样本数量均衡且具有代表性。红洋葱和黄洋葱作为主要的研究对象,分别涵盖了不同的形态、颜色和尺寸特征,以帮助模型学习到更为细致的特征提取能力。同时,参考物体的引入旨在为模型提供一个标准的对比基准,增强其在实际应用中的精确度和可靠性。

数据集中的图像经过精心标注,确保每个类别的区域都被准确地分割出来。这种精确的标注不仅有助于模型在训练过程中更好地理解不同类别之间的差异,还能提高其在实际应用中的表现。通过对洋葱的有效分割,系统能够准确测量洋葱的尺寸,为农业生产和市场交易提供科学依据。

总之,本项目的数据集以其丰富的类别和高质量的标注,为改进YOLOv11的洋葱尺寸测量图像分割检测系统奠定了坚实的基础。通过对该数据集的深入分析和应用,我们期望能够实现更高效、更准确的洋葱检测与分割,推动相关领域的研究与实践发展。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.全套项目环境部署视频教程(零基础手把手教学)

5.1 所需软件PyCharm和Anaconda安装教程(第一步)

5.2 安装Python虚拟环境创建和依赖库安装视频教程(第二步)

6.改进YOLOv11训练教程和Web_UI前端加载模型教程(零基础手把手教学)

6.1 改进YOLOv11训练教程和Web_UI前端加载模型教程(第三步)

按照上面的训练视频教程链接加载项目提供的数据集,运行train.py即可开始训练

 Epoch   gpu_mem       box       obj       cls    labels  img_size
 1/200     20.8G   0.01576   0.01955  0.007536        22      1280: 100%|██████████| 849/849 [14:42<00:00,  1.04s/it]
           Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100%|██████████| 213/213 [01:14<00:00,  2.87it/s]
             all       3395      17314      0.994      0.957      0.0957      0.0843

 Epoch   gpu_mem       box       obj       cls    labels  img_size
 2/200     20.8G   0.01578   0.01923  0.007006        22      1280: 100%|██████████| 849/849 [14:44<00:00,  1.04s/it]
           Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100%|██████████| 213/213 [01:12<00:00,  2.95it/s]
             all       3395      17314      0.996      0.956      0.0957      0.0845

 Epoch   gpu_mem       box       obj       cls    labels  img_size
 3/200     20.8G   0.01561    0.0191  0.006895        27      1280: 100%|██████████| 849/849 [10:56<00:00,  1.29it/s]
           Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100%|███████   | 187/213 [00:52<00:00,  4.04it/s]
             all       3395      17314      0.996      0.957      0.0957      0.0845
项目数据集下载链接

7.原始YOLOv11算法讲解

YOLOv11是Ultralytics推出的YOLO系列最新版本,专为实现尖端的物体检测而设计。其架构和训练方法上进行了重大改进,使之不仅具备卓越的准确性和处理速度,还在计算效率上实现了一场革命。得益于其改进的主干和颈部架构,YOLOv11在特征提取和处理复杂任务时表现更加出色。在2024年9月27日,Ultralytics通过长达九小时的在线直播发布这一新作,展示了其在计算机视觉领域的革新。

YOLOv11通过精细的架构设计和优化训练流程,在保持高精度的同时,缩减了参数量,与YOLOv8m相比减少了22%的参数,使其在COCO数据集上的平均准确度(mAP)有所提升。这种效率的提高使YOLOv11非常适合部署在各种硬件环境中,包括边缘设备、云计算平台以及支持NVIDIA GPU的系统,确保在灵活性上的优势。

该模型支持广泛的任务,从对象检测、实例分割到图像分类、姿态估计和定向对象检测(OBB),几乎覆盖了计算机视觉的所有主要挑战。其创新的C3k2和C2PSA模块提升了网络深度和注意力机制的应用,提高了特征提取的效率和效果。同时,YOLOv11的改进网络结构也使之在复杂视觉任务上得以从容应对,成为各类计算机视觉任务的多功能选择。这些特性令YOLOv11在实施实时物体检测的各个领域中表现出众。


2024年9月27日,Ultralytics在线直播长达九小时,为YOLO11召开“发布会”

YOLO11 是 Ultralytics YOLO 系列实时物体检测器的最新版本,它以尖端的准确性、速度和效率重新定义了可能性。在之前 YOLO
版本的显著进步的基础上,YOLO11 在架构和训练方法方面进行了重大改进,使其成为各种计算机视觉任务的多功能选择。

YOLO11主要特点:
  • 增强的特征提取:YOLO11 采用了改进的主干和颈部架构,增强了特征提取能力,可实现更精确的对象检测和复杂任务性能。
  • 针对效率和速度进行了优化:YOLO11 引入了完善的架构设计和优化的训练流程,可提供更快的处理速度,并在准确度和性能之间保持最佳平衡。
  • 更少的参数,更高的准确度:借助模型设计的进步,YOLO11m 在 COCO 数据集上实现了更高的平均准确度 (mAP),同时使用的参数比 YOLOv8m 少 22%,从而提高了计算效率,同时又不影响准确度。
  • 跨环境的适应性:YOLO11 可以无缝部署在各种环境中,包括边缘设备、云平台和支持 NVIDIA GPU 的系统,从而确保最大的灵活性。
  • 支持的任务范围广泛:无论是对象检测、实例分割、图像分类、姿势估计还是定向对象检测 (OBB),YOLO11 都旨在满足各种计算机视觉挑战。
支持的任务和模式

YOLO11 以 YOLOv8 中引入的多功能模型系列为基础,为各种计算机视觉任务提供增强的支持:

ModelFilenamesTaskInferenceValidationTrainingExport
YOLO11yolol11n.pt, yolol11s.pt, yolol11m.pt, yolol11x.ptDetection
YOLO11-segyolol11n-seg.pt, yolol11s-seg.pt, yolol11m-seg.pt,
yolol11x-seg.ptInstance Segmentation
YOLO11-poseyolol11n-pose.pt, yolol11s-pose.pt, yolol11m-pose.pt,
yolol11x-pose.ptPose/Keypoints
YOLO11-obbyolol11n-obb.pt, yolol11s-obb.pt, yolol11m-obb.pt,
yolol11x-obb.ptOriented Detection
YOLO11-clsyolol11n-cls.pt, yolol11s-cls.pt, yolol11m-cls.pt,
yolol11x-cls.ptClassification
简单的 YOLO11 训练和推理示例

以下示例适用于用于对象检测的 YOLO11 Detect 模型。

from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")

# Train the model
train_results = model.train(
    data="coco8.yaml",  # path to dataset YAML
    epochs=100,  # number of training epochs
    imgsz=640,  # training image size
    device="cpu",  # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu
)

# Evaluate model performance on the validation set
metrics = model.val()

# Perform object detection on an image
results = model("path/to/image.jpg")
results[0].show()

# Export the model to ONNX format
path = model.export(format="onnx")  # return path to exported model
支持部署于边缘设备

YOLO11 专为适应各种环境而设计,包括边缘设备。其优化的架构和高效的处理能力使其适合部署在边缘设备、云平台和支持 NVIDIA GPU
的系统上。这种灵活性确保 YOLO11 可用于各种应用,从移动设备上的实时检测到云环境中的复杂分割任务。有关部署选项的更多详细信息,请参阅导出文档。

YOLOv11 yaml文件
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)

  - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)

YOLO11和YOLOv8 yaml文件的区别

改进模块代码
  • C3k2

    class C3k2(C2f):
    “”“Faster Implementation of CSP Bottleneck with 2 convolutions.”“”

    def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):
        """Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""
        super().__init__(c1, c2, n, shortcut, g, e)
        self.m = nn.ModuleList(
            C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n)
        )
    

C3k2,它是具有两个卷积的CSP(Partial Cross Stage)瓶颈架构的更快实现。

类继承:

  • C3k2继承自类C2f。这表明C2f很可能实现了经过修改的基本CSP结构,而C3k2进一步优化或修改了此结构。

构造函数(__init__):

  • c1:输入通道。

  • c2:输出通道。

  • n:瓶颈层数(默认为1)。

  • c3k:一个布尔标志,确定是否使用C3k块或常规Bottleneck块。

  • e:扩展比率,控制隐藏层的宽度(默认为0.5)。

  • g:分组卷积的组归一化参数或组数(默认值为 1)。

  • shortcut:一个布尔值,用于确定是否在网络中包含快捷方式连接(默认值为 True)。

初始化:

  • super().__init__(c1, c2, n, short-cut, g, e) 调用父类 C2f 的构造函数,初始化标准 CSP 组件,如通道数、快捷方式、组等。

模块列表(self.m):

  • nn.ModuleList 存储 C3kBottleneck 模块,具体取决于 c3k 的值。

  • 如果 c3kTrue,它会初始化 C3k 模块。C3k 模块接收以下参数:

  • self.c:通道数(源自 C2f)。

  • 2:这表示在 C3k 块内使用了两个卷积层。

  • shortcutg:从 C3k2 构造函数传递。

  • 如果 c3kFalse,则初始化标准 Bottleneck 模块。

for _ in range(n) 表示将创建 n 个这样的块。

总结:

  • C3k2 实现了 CSP 瓶颈架构,可以选择使用自定义 C3k 块(具有两个卷积)或标准 Bottleneck 块,具体取决于 c3k 标志。

  • C2PSA

    class C2PSA(nn.Module):
    “”"
    C2PSA module with attention mechanism for enhanced feature extraction and processing.

    This module implements a convolutional block with attention mechanisms to enhance feature extraction and processing
    capabilities. It includes a series of PSABlock modules for self-attention and feed-forward operations.
    
    Attributes:
        c (int): Number of hidden channels.
        cv1 (Conv): 1x1 convolution layer to reduce the number of input channels to 2*c.
        cv2 (Conv): 1x1 convolution layer to reduce the number of output channels to c.
        m (nn.Sequential): Sequential container of PSABlock modules for attention and feed-forward operations.
    
    Methods:
        forward: Performs a forward pass through the C2PSA module, applying attention and feed-forward operations.
    
    Notes:
        This module essentially is the same as PSA module, but refactored to allow stacking more PSABlock modules.
    
    Examples:
        >>> c2psa = C2PSA(c1=256, c2=256, n=3, e=0.5)
        >>> input_tensor = torch.randn(1, 256, 64, 64)
        >>> output_tensor = c2psa(input_tensor)
    """
    
    def __init__(self, c1, c2, n=1, e=0.5):
        """Initializes the C2PSA module with specified input/output channels, number of layers, and expansion ratio."""
        super().__init__()
        assert c1 == c2
        self.c = int(c1 * e)
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv(2 * self.c, c1, 1)
    
        self.m = nn.Sequential(*(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n)))
    
    def forward(self, x):
        """Processes the input tensor 'x' through a series of PSA blocks and returns the transformed tensor."""
        a, b = self.cv1(x).split((self.c, self.c), dim=1)
        b = self.m(b)
        return self.cv2(torch.cat((a, b), 1))
    

C2PSA 模块是一个自定义神经网络层,带有注意力机制,用于增强特征提取和处理。

类概述

  • 目的:

  • C2PSA 模块引入了一个卷积块,利用注意力机制来改进特征提取和处理。

  • 它使用一系列 PSABlock 模块,这些模块可能代表某种形式的位置自注意力 (PSA),并且该架构旨在允许堆叠多个 PSABlock 层。

构造函数(__init__):

  • 参数:

  • c1:输入通道(必须等于 c2)。

  • c2:输出通道(必须等于 c1)。

  • n:要堆叠的 PSABlock 模块数量(默认值为 1)。

  • e:扩展比率,用于计算隐藏通道的数量(默认值为 0.5)。

  • 属性:

  • self.c:隐藏通道数,计算为 int(c1 * e)

  • self.cv1:一个 1x1 卷积,将输入通道数从 c1 减少到 2 * self.c。这为将输入分成两部分做好准备。

  • self.cv2:另一个 1x1 卷积,处理后将通道维度恢复回 c1

  • self.m:一系列 PSABlock 模块。每个 PSABlock 接收 self.c 通道,注意头的数量为 self.c // 64。每个块应用注意和前馈操作。

前向方法:

  • 输入:

  • x,输入张量。

  • 操作:

  1. self.cv1(x) 应用 1x1 卷积,将输入通道大小从 c1 减小到 2 * self.c

  2. 生成的张量沿通道维度分为两部分,ab

  • a:第一个 self.c 通道。

  • b:剩余的 self.c 通道。

  1. b 通过顺序容器 self.m,它是 PSABlock 模块的堆栈。这部分经过基于注意的处理。

  2. 处理后的张量 ba 连接。

  3. self.cv2 应用 1x1 卷积,将通道大小恢复为 c1

  • 输出:

  • 应用注意和卷积操作后的变换后的张量。

总结:

  • C2PSA 是一个增强型卷积模块,它通过堆叠的 PSABlock 模块应用位置自注意力。它拆分输入张量,将注意力应用于其中一部分,然后重新组合并通过最终卷积对其进行处理。此结构有助于从输入数据中提取复杂特征。
网络结构

8.200+种全套改进YOLOV11创新点原理讲解

8.1 200+种全套改进YOLOV11创新点原理讲解大全

由于篇幅限制,每个创新点的具体原理讲解就不全部展开,具体见下列网址中的改进模块对应项目的技术原理博客网址【Blog】(创新点均为模块化搭建,原理适配YOLOv5~YOLOv11等各种版本)

改进模块技术原理博客【Blog】网址链接

9.png

8.2 精选部分改进YOLOV11创新点原理讲解
这里节选部分改进创新点展开原理讲解(完整的改进原理见上图和改进模块技术原理博客链接【如果此小节的图加载失败可以通过CSDN或者Github搜索该博客的标题访问原始博客,原始博客图片显示正常】

AutoFocus: Efficient Multi-Scale Conv简介

参考该博客提出了AutoFocus,一种高效的多尺度目标检测算法。相较于以前对整个图像金字塔进行处理,该方法以一种由表及里的姿态,仅处理哪些整体上看来很有可能存在小物体的区域。这个可以通过预测一张类别未知的分割图FocusPixels来得到。为了高效利用FocusPixels,另外一个算法用于产生包含FocusPixels的FocusChips,这样可以减少计算量并处理更更精细的尺度。在不同尺度上FocusChips所得到的检测结果综合时,会出现问题,我们也提供了解决问题的方案。AutoFocus在COCO上的结果有49.7%mAP(50%重叠下68.3%),与多尺度baseline相仿但是快了2.5倍。金字塔中处理的像素数量减少了5倍mAP只下降1%,在与RetinaNet采用相同的ResNet-101结构且速度相同时,高了10%mAP。

人类寻找物体是一个动态的过程,且寻找时间与场景的复杂度是直接相关的。当我们的眼神在不同的点之间漂移时,其他的区域会被我们有意忽视。然而,现在的检测算法是一种静态的推理过程且图像金字塔中的每个像素都受到了一样的对待,这使得过程变得没有效率。现在许多的应用都不强调实时性,而计算上的节省其实可以产生很大收益。

在COCO数据集中,虽然40%的物体都是小物体,但是它们一共只占了全图的0.3%。如果金字塔是3倍关系,则在高分辨率层要进行9倍的运算。XXX 。那么有没有办法在低分辨率下找出可能含有这些物体的区域呢?

以人眼方案类比,我们可以从低分辨率图像开始,找出有可能存在物体的区域再“聚集”到高分辨率。我们的AutoFocus会在一层中计算小物体的分割图FocusPixels,而在每一个FocusPixels上会用一个算法产生下一层所需要关注的chips。在COCO的最大分辨率层上我们可以只处理**20%的像素而性能不下降,如果只处理5%**也只下降1%而已。

图像金字塔与卷积神经网络对CV十分重要。然而卷积神经网络无法做到对尺度不敏感,所以为了不同大小的物体需要依赖图像金字塔。虽然训练已经有了高效的方法,但是其推断时间依然远离实际使用标准。

目标检测加速有很长历史了。常用的有特征近似以减少尺度、级联、特征金字塔,且最后一个最近很多人研究。

AutoFocus为速度与精度之间提供了一个平滑的折衷,指出可以在低分辨率下看出小物体的所在,从而节约计算。FocusPixels的计算较为容易。

先简单介绍一下SNIP,是一种多尺度的训练、推断算法。主要思想是训练针对某个特定scale的检测器而不是scale-invariant检测器。这样训练样本就局限于在某个尺度范围内,以适于这个检测器处理。比如在高分辨率仅处理小物体而高分辨率仅处理大物体,其优势在于训练时不用考虑尺度的变化。

由于训练时物体大小是已知的,我们在图像金字塔中可以忽略大量区域而只处理物体周围的区域。SNIPER说明这样低分辨率的训练与全图训练相比并不会降低性能。同样,在推断过程中如果可以在大分辨率图像上预测可能出现小物体的chip,我们也就不用处理整张高分辨率图片。在训练时,许多物体会被裁剪、扭曲,这可以当作是一种数据扩增,然而当这个情况在推断时出现,则会产生错误,所以我们还需要一个算法来整合不同尺度上的检测结果。

AutoFocus框架

如SIFT、SURF等传统分类特征包含两个组件,一个detector和一个descriptor。detector只包含轻量级的操作如DoG、LoG,用于在整张图片上找到感兴趣的区域;descriptor,一般来说计算量比较大,则只需要关注那些咸兴趣的区域。这个级联结构保障了图片处理的效率。

同样,AutoFocus框架也是用于预测感兴趣的区域,并丢弃在下一尺度不可能存在物体的区域,并将裁剪和缩放后的区域传递给下一尺度。AutoFocus由三个部分组成:FocusPixels,FocusChips和focus stacking。

FocusPixels

FocusPixels定义在卷积网络特征图的粒度之上(如conv5),如果特征图上某个像素与小物体有重叠则标注为一个FocusPixel。(小物体:面积处于一个网络的输入范围之内)。训练过程中,FocusPixels标注为正,某些与不在面积范围内的物体有重叠的像素标注为无效,其他像素标注为负。AutoFocus的训练目标是使在FocusPixels区域产生较大的激活值。
在这里插入图片描述
如果同时多个物体与同一像素重叠,优先给正标注。我们的网络输入是512x512,然后a,b,c取值分别是5,64,90。对于太大或太小的物体,我们认为当前尺度上没有足够人信息进行判断,所以会标定为无效。整个网络结构如下图。训练时加两层带ReLU的卷积(3x3和1x1)以及一个二分类softmax来预测FocusPixels。

在这里插入图片描述

FocusChip生成

推断过程中,我们标注输出概率大于阈值t的像素(这个参数可以控制加速比),得到一些连通域。对于每一个域,我们做一次膨胀使其包含一些有助于识别的周围信息,膨胀后相连的部分要合并。然后,我们生成一些包含连通域的chips(不同chips可能重叠,如有重叠则合并)。有些chip可能太小缺少必要信息,并使chip的大小变化很大,为了效率我们要求保证一个最小的chip size。算法流程如下:

在这里插入图片描述

级联推断过程

我们的过程类似于图片金字塔的推断过程但是在过程中一步步去除不关注的图片区域。我们在最低分辨率上进行检测并生成chips,然后在这些chips再进行检测和生成chips。

Focus Stacking

这种级联分类器的一个问题是在chip边缘本来的大物体可能生成一些被剪裁的检测目标。在下一个尺度上,由于剪裁过了,所以会检测到小的、错误的正例False Positive。之前算法中的第二步膨胀其实就是为了保证没有物体会出现在chip的边缘。这样,当我们在局部图片chip的边缘检测到物体时,就可以把这个检测结果丢弃,即使其在SNIP的范围内。

也有一些物体在图片边缘的特殊情况。如果chip和图片共享一条边的话,我们会检查检测结果的其他边是否完全在里面,如果在,则保留它,否则丢弃。

在每一尺度得到有效检测结果后,我们可以将不同尺度上的结果进行整合,将这些结果映射到原图坐标系上。最后,非极大值抑制NMS用于聚集。网络结构如之前的图片所示。

9.系统功能展示

图9.1.系统支持检测结果表格显示

图9.2.系统支持置信度和IOU阈值手动调节

图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)

图9.4.系统支持摄像头实时识别

图9.5.系统支持图片识别

图9.6.系统支持视频识别

图9.7.系统支持识别结果文件自动保存

图9.8.系统支持Excel导出检测结果数据

10.png

11.png

12.png

13.png

14.png

15.png

16.png

17.png

10. YOLOv11核心改进源码讲解

10.1 activation.py

以下是经过精简和注释的核心代码部分:

import torch
import torch.nn as nn

class AGLU(nn.Module):
    """AGLU激活函数模块,来源于https://github.com/kostas1515/AGLU。"""

    def __init__(self, device=None, dtype=None) -> None:
        """初始化AGLU激活函数模块。"""
        super().__init__()
        # 使用Softplus作为基础激活函数,beta设置为-1.0
        self.act = nn.Softplus(beta=-1.0)
        # 初始化lambda参数,并将其设为可学习参数
        self.lambd = nn.Parameter(nn.init.uniform_(torch.empty(1, device=device, dtype=dtype)))
        # 初始化kappa参数,并将其设为可学习参数
        self.kappa = nn.Parameter(nn.init.uniform_(torch.empty(1, device=device, dtype=dtype)))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """计算AGLU激活函数的前向传播。"""
        # 将lambda参数限制在最小值0.0001,避免除零错误
        lam = torch.clamp(self.lambd, min=0.0001)
        # 计算AGLU激活值
        return torch.exp((1 / lam) * self.act((self.kappa * x) - torch.log(lam)))

代码分析:

  1. AGLU类:继承自nn.Module,实现了一个自定义的激活函数。
  2. 初始化方法
    • self.act:使用Softplus作为基础激活函数。
    • self.lambdself.kappa:这两个参数是可学习的,使用均匀分布初始化。
  3. 前向传播方法
    • lam:对lambd进行限制,确保其不小于0.0001,以避免在计算中出现除零错误。
    • 返回值:根据AGLU的公式计算激活值。

这个模块在深度学习模型中可以作为激活函数使用,能够根据输入动态调整激活特性。

这个文件名为 activation.py,主要定义了一个名为 AGLU 的激活函数模块。该模块是基于 GitHub 上的一个项目(https://github.com/kostas1515/AGLU)实现的统一激活函数。

首先,文件导入了 PyTorch 库和其神经网络模块。AGLU 类继承自 nn.Module,这是 PyTorch 中所有神经网络模块的基类。在 __init__ 方法中,初始化了两个参数:lambdkappa,这两个参数都是通过均匀分布初始化的可学习参数。lambd 的初始值和 kappa 的初始值都是在指定的设备(如 CPU 或 GPU)和数据类型下生成的。self.act 被定义为 nn.Softplus(beta=-1.0),这是一个平滑的激活函数,用于后续计算。

forward 方法中,定义了前向传播的计算过程。输入 x 是一个张量,首先对 lambd 进行限制,确保其最小值为 0.0001,以避免数值不稳定。接着,计算激活函数的输出。具体来说,输出是通过对 self.act 计算结果进行指数运算得到的,其中 self.act 的输入是 (self.kappa * x) - torch.log(lam)。这种设计使得 AGLU 激活函数能够根据输入动态调整其行为。

总的来说,这个文件实现了一个自定义的激活函数模块,利用了可学习的参数来增强模型的表达能力,并且通过平滑激活函数来保持数值稳定性。

10.2 CSwomTramsformer.py

以下是经过简化并添加详细中文注释的核心代码部分:

import torch
import torch.nn as nn
import numpy as np

class Mlp(nn.Module):
    """多层感知机(MLP)模块"""
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features  # 输出特征数
        hidden_features = hidden_features or in_features  # 隐藏层特征数
        self.fc1 = nn.Linear(in_features, hidden_features)  # 第一层线性变换
        self.act = act_layer()  # 激活函数
        self.fc2 = nn.Linear(hidden_features, out_features)  # 第二层线性变换
        self.drop = nn.Dropout(drop)  # Dropout层

    def forward(self, x):
        """前向传播"""
        x = self.fc1(x)  # 线性变换
        x = self.act(x)  # 激活
        x = self.drop(x)  # Dropout
        x = self.fc2(x)  # 线性变换
        x = self.drop(x)  # Dropout
        return x

class CSWinBlock(nn.Module):
    """CSWin Transformer中的一个块"""
    def __init__(self, dim, num_heads, mlp_ratio=4., drop=0., attn_drop=0.):
        super().__init__()
        self.dim = dim  # 输入特征维度
        self.num_heads = num_heads  # 注意力头数
        self.mlp_ratio = mlp_ratio  # MLP的隐藏层比例
        self.qkv = nn.Linear(dim, dim * 3)  # 线性变换用于生成Q、K、V
        self.norm1 = nn.LayerNorm(dim)  # 归一化层

        # 注意力层
        self.attn = LePEAttention(dim, num_heads=num_heads, attn_drop=attn_drop)

        # MLP层
        mlp_hidden_dim = int(dim * mlp_ratio)  # 隐藏层维度
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, out_features=dim, drop=drop)
        self.norm2 = nn.LayerNorm(dim)  # 归一化层

    def forward(self, x):
        """前向传播"""
        img = self.norm1(x)  # 归一化
        qkv = self.qkv(img).reshape(x.shape[0], -1, 3, self.dim).permute(2, 0, 1, 3)  # 生成Q、K、V

        # 计算注意力
        x = self.attn(qkv)  # 注意力计算
        x = x + self.drop_path(x)  # 残差连接
        x = x + self.drop_path(self.mlp(self.norm2(x)))  # MLP层的残差连接

        return x

class CSWinTransformer(nn.Module):
    """CSWin Transformer模型"""
    def __init__(self, img_size=640, in_chans=3, num_classes=1000, embed_dim=96, depth=[2,2,6,2], num_heads=12):
        super().__init__()
        self.num_classes = num_classes
        self.embed_dim = embed_dim  # 嵌入维度

        # 初始卷积嵌入层
        self.stage1_conv_embed = nn.Sequential(
            nn.Conv2d(in_chans, embed_dim, 7, 4, 2),  # 卷积层
            nn.LayerNorm(embed_dim)  # 归一化层
        )

        # 定义多个CSWinBlock
        self.stage1 = nn.ModuleList([
            CSWinBlock(dim=embed_dim, num_heads=num_heads) for _ in range(depth[0])
        ])

        # 其他阶段的块定义省略...

    def forward(self, x):
        """前向传播"""
        x = self.stage1_conv_embed(x)  # 初始卷积嵌入
        for blk in self.stage1:
            x = blk(x)  # 通过每个块
        return x

# 示例用法
if __name__ == '__main__':
    inputs = torch.randn((1, 3, 640, 640))  # 随机输入
    model = CSWinTransformer()  # 创建模型
    res = model(inputs)  # 前向传播
    print(res.size())  # 输出结果的尺寸

代码说明:

  1. Mlp类:实现了一个简单的多层感知机,包括两个线性层和激活函数,支持Dropout。
  2. CSWinBlock类:定义了CSWin Transformer中的一个基本块,包含注意力机制和MLP层。
  3. CSWinTransformer类:构建了整个CSWin Transformer模型,包含输入层和多个CSWinBlock。
  4. 前向传播:每个类都有一个forward方法,用于定义数据如何通过网络流动。

该代码的核心部分主要集中在CSWin Transformer的基本构建块和模型结构上。

这个程序文件实现了一个名为CSWin Transformer的视觉变换器模型,主要用于图像分类等计算机视觉任务。该模型由多个模块组成,包括MLP(多层感知机)、LePE(Local Enhanced Position Encoding)注意力机制、CSWinBlock(CSWin块)、合并块(Merge Block)和整个CSWinTransformer模型。以下是对代码的详细说明。

首先,文件导入了必要的库,包括PyTorch及其相关模块、NumPy和一些用于图像处理的工具。文件开头的注释部分说明了版权信息和作者。

接下来,定义了一个MLP类,它是一个简单的前馈神经网络,包括两个线性层和一个激活函数(默认为GELU)。这个类在前向传播中执行线性变换、激活和丢弃操作。

然后,定义了LePEAttention类,它实现了局部增强位置编码的注意力机制。该类的构造函数接受多个参数,包括输入维度、分辨率、头数等。其核心功能是将输入的图像数据转换为窗口格式,并计算注意力分数。该类的前向传播方法接受查询、键和值的输入,并计算注意力输出。

CSWinBlock类实现了CSWin Transformer的基本构建块。它包含多个LePEAttention模块和一个MLP模块。该类的构造函数设置了输入维度、头数、分辨率等参数,并根据是否为最后一个阶段配置不同的注意力模块。前向传播方法中,输入经过归一化、注意力计算和MLP处理,最终返回输出。

img2windows和windows2img函数用于将图像从标准格式转换为窗口格式,以及将窗口格式转换回标准格式。这两个函数在注意力计算中起到重要作用。

Merge_Block类用于合并特征图,通过卷积层和归一化层来处理输入数据。

CSWinTransformer类是整个模型的主体,包含多个阶段,每个阶段由多个CSWinBlock和Merge_Block组成。构造函数中定义了输入图像的处理流程,包括卷积嵌入、多个CSWinBlock的堆叠以及特征合并。前向传播方法将输入数据传递通过各个阶段,并返回特征输出。

文件还定义了一些辅助函数,如_conv_filter用于转换权重,update_weight用于更新模型权重,以及四个不同规模的CSWin模型(tiny、small、base、large)的构造函数。这些函数允许用户根据需要加载预训练权重。

最后,在主程序部分,创建了不同规模的CSWin模型实例,并对随机生成的输入数据进行前向传播,输出每个模型的特征图尺寸。

整体来看,这个程序实现了一个高效的视觉变换器模型,结合了局部增强的注意力机制和多层特征提取,适用于各种计算机视觉任务。

10.3 dynamic_snake_conv.py

以下是经过简化和注释的核心代码部分,主要包括 DySnakeConvDSConv 类,以及 DSC 类的核心功能。注释详细解释了每个部分的作用和实现原理。

import torch
import torch.nn as nn

class DySnakeConv(nn.Module):
    def __init__(self, inc, ouc, k=3) -> None:
        """
        DySnakeConv 类的构造函数
        :param inc: 输入通道数
        :param ouc: 输出通道数
        :param k: 卷积核大小,默认为3
        """
        super().__init__()
        
        # 定义三个卷积层
        self.conv_0 = Conv(inc, ouc, k)  # 标准卷积
        self.conv_x = DSConv(inc, ouc, 0, k)  # 沿x轴的动态蛇卷积
        self.conv_y = DSConv(inc, ouc, 1, k)  # 沿y轴的动态蛇卷积
    
    def forward(self, x):
        """
        前向传播函数
        :param x: 输入特征图
        :return: 连接后的输出特征图
        """
        # 将三个卷积的输出在通道维度上连接
        return torch.cat([self.conv_0(x), self.conv_x(x), self.conv_y(x)], dim=1)

class DSConv(nn.Module):
    def __init__(self, in_ch, out_ch, morph, kernel_size=3, if_offset=True, extend_scope=1):
        """
        动态蛇卷积(DSConv)的构造函数
        :param in_ch: 输入通道数
        :param out_ch: 输出通道数
        :param morph: 卷积核的形态(0表示沿x轴,1表示沿y轴)
        :param kernel_size: 卷积核大小
        :param if_offset: 是否需要偏移(True表示需要)
        :param extend_scope: 扩展范围,默认为1
        """
        super(DSConv, self).__init__()
        # 用于学习可变形偏移的卷积层
        self.offset_conv = nn.Conv2d(in_ch, 2 * kernel_size, 3, padding=1)
        self.bn = nn.BatchNorm2d(2 * kernel_size)  # 批归一化
        self.kernel_size = kernel_size

        # 定义沿x轴和y轴的动态蛇卷积
        self.dsc_conv_x = nn.Conv2d(in_ch, out_ch, kernel_size=(kernel_size, 1), stride=(kernel_size, 1), padding=0)
        self.dsc_conv_y = nn.Conv2d(in_ch, out_ch, kernel_size=(1, kernel_size), stride=(1, kernel_size), padding=0)

        self.gn = nn.GroupNorm(out_ch // 4, out_ch)  # 组归一化
        self.act = Conv.default_act  # 默认激活函数

        self.extend_scope = extend_scope
        self.morph = morph
        self.if_offset = if_offset

    def forward(self, f):
        """
        前向传播函数
        :param f: 输入特征图
        :return: 经过动态蛇卷积后的特征图
        """
        # 计算偏移
        offset = self.offset_conv(f)
        offset = self.bn(offset)
        offset = torch.tanh(offset)  # 将偏移限制在[-1, 1]之间

        # 创建 DSC 对象以进行变形卷积
        dsc = DSC(f.shape, self.kernel_size, self.extend_scope, self.morph)
        deformed_feature = dsc.deform_conv(f, offset, self.if_offset)  # 进行变形卷积

        # 根据 morph 的值选择对应的卷积
        if self.morph == 0:
            x = self.dsc_conv_x(deformed_feature.type(f.dtype))
        else:
            x = self.dsc_conv_y(deformed_feature.type(f.dtype))

        x = self.gn(x)  # 归一化
        x = self.act(x)  # 激活
        return x

class DSC(object):
    def __init__(self, input_shape, kernel_size, extend_scope, morph):
        """
        DSC 类的构造函数
        :param input_shape: 输入特征图的形状
        :param kernel_size: 卷积核大小
        :param extend_scope: 扩展范围
        :param morph: 卷积核的形态
        """
        self.num_points = kernel_size
        self.width = input_shape[2]
        self.height = input_shape[3]
        self.morph = morph
        self.extend_scope = extend_scope

        # 定义特征图的形状
        self.num_batch = input_shape[0]
        self.num_channels = input_shape[1]

    def deform_conv(self, input, offset, if_offset):
        """
        进行变形卷积
        :param input: 输入特征图
        :param offset: 偏移量
        :param if_offset: 是否需要偏移
        :return: 变形后的特征图
        """
        y, x = self._coordinate_map_3D(offset, if_offset)  # 计算坐标图
        deformed_feature = self._bilinear_interpolate_3D(input, y, x)  # 进行双线性插值
        return deformed_feature

    def _coordinate_map_3D(self, offset, if_offset):
        """
        计算3D坐标图
        :param offset: 偏移量
        :param if_offset: 是否需要偏移
        :return: y和x坐标图
        """
        # 省略具体实现细节
        pass

    def _bilinear_interpolate_3D(self, input_feature, y, x):
        """
        进行3D双线性插值
        :param input_feature: 输入特征图
        :param y: y坐标图
        :param x: x坐标图
        :return: 插值后的特征图
        """
        # 省略具体实现细节
        pass

代码说明

  1. DySnakeConv 类: 这是一个复合卷积层,包含标准卷积和两个动态蛇卷积(分别沿x轴和y轴)。在前向传播中,它将三个卷积的输出在通道维度上连接。

  2. DSConv 类: 这是动态蛇卷积的实现,能够根据输入特征图和偏移量进行变形卷积。构造函数中定义了偏移卷积、归一化层和两个不同方向的卷积层。

  3. DSC 类: 负责处理变形卷积的核心逻辑,包括计算坐标图和进行双线性插值。deform_conv 方法是其主要功能,负责调用其他辅助方法来完成变形卷积的计算。

通过这些注释,可以更清晰地理解每个类和方法的功能以及它们之间的关系。

这个程序文件 dynamic_snake_conv.py 实现了一个动态蛇形卷积(Dynamic Snake Convolution)的神经网络模块,主要用于图像处理任务。该模块包含两个主要的类:DySnakeConvDSConv,以及一个辅助类 DSC

DySnakeConv 类中,构造函数初始化了三个卷积层:conv_0conv_xconv_y。其中,conv_0 是一个标准卷积层,而 conv_xconv_y 是动态蛇形卷积层,分别沿着 x 轴和 y 轴进行卷积。forward 方法将输入 x 通过这三个卷积层处理后,将结果在通道维度上拼接(torch.cat),以生成最终的输出。

DSConv 类实现了动态蛇形卷积的核心逻辑。构造函数中定义了多个参数,包括输入和输出通道数、卷积核大小、形态(morphology)、是否使用偏移(if_offset)等。该类使用一个额外的卷积层 offset_conv 来学习可变形的偏移量,并通过批归一化(Batch Normalization)对偏移量进行处理。根据形态参数,DSConv 会选择不同的卷积操作(沿 x 轴或 y 轴)进行特征提取。

forward 方法中,首先计算偏移量,然后通过 DSC 类生成变形后的特征图。根据形态参数的不同,选择相应的卷积操作并应用激活函数,最终返回处理后的特征图。

DSC 类是实现动态蛇形卷积的辅助类,负责生成坐标映射和进行双线性插值。它的构造函数接收输入特征图的形状、卷积核大小、扩展范围和形态参数。该类包含多个方法,其中 _coordinate_map_3D 用于计算变形后的坐标,_bilinear_interpolate_3D 用于对输入特征图进行双线性插值,生成变形后的特征图。

整体而言,这个程序实现了一个灵活的卷积操作,可以根据输入特征图的内容动态调整卷积核的位置,从而提高卷积神经网络在处理复杂图像时的表现。

10.4 kan_conv.py

以下是代码中最核心的部分,并附上详细的中文注释:

import torch
import torch.nn as nn

class KANConvNDLayer(nn.Module):
    def __init__(self, conv_class, norm_class, input_dim, output_dim, spline_order, kernel_size,
                 groups=1, padding=0, stride=1, dilation=1,
                 ndim: int = 2, grid_size=5, base_activation=nn.GELU, grid_range=[-1, 1], dropout=0.0):
        super(KANConvNDLayer, self).__init__()
        
        # 初始化参数
        self.inputdim = input_dim  # 输入维度
        self.outdim = output_dim    # 输出维度
        self.spline_order = spline_order  # 样条阶数
        self.kernel_size = kernel_size  # 卷积核大小
        self.padding = padding  # 填充
        self.stride = stride  # 步幅
        self.dilation = dilation  # 膨胀
        self.groups = groups  # 分组卷积数
        self.ndim = ndim  # 维度(1D, 2D, 3D)
        self.grid_size = grid_size  # 网格大小
        self.base_activation = base_activation()  # 基础激活函数
        self.grid_range = grid_range  # 网格范围

        # 初始化dropout层
        self.dropout = None
        if dropout > 0:
            if ndim == 1:
                self.dropout = nn.Dropout1d(p=dropout)
            elif ndim == 2:
                self.dropout = nn.Dropout2d(p=dropout)
            elif ndim == 3:
                self.dropout = nn.Dropout3d(p=dropout)

        # 检查分组卷积的有效性
        if groups <= 0:
            raise ValueError('groups must be a positive integer')
        if input_dim % groups != 0:
            raise ValueError('input_dim must be divisible by groups')
        if output_dim % groups != 0:
            raise ValueError('output_dim must be divisible by groups')

        # 创建基础卷积层和样条卷积层
        self.base_conv = nn.ModuleList([conv_class(input_dim // groups,
                                                   output_dim // groups,
                                                   kernel_size,
                                                   stride,
                                                   padding,
                                                   dilation,
                                                   groups=1,
                                                   bias=False) for _ in range(groups)])

        self.spline_conv = nn.ModuleList([conv_class((grid_size + spline_order) * input_dim // groups,
                                                     output_dim // groups,
                                                     kernel_size,
                                                     stride,
                                                     padding,
                                                     dilation,
                                                     groups=1,
                                                     bias=False) for _ in range(groups)])

        # 创建归一化层和激活层
        self.layer_norm = nn.ModuleList([norm_class(output_dim // groups) for _ in range(groups)])
        self.prelus = nn.ModuleList([nn.PReLU() for _ in range(groups)])

        # 初始化网格
        h = (self.grid_range[1] - self.grid_range[0]) / grid_size
        self.grid = torch.linspace(
            self.grid_range[0] - h * spline_order,
            self.grid_range[1] + h * spline_order,
            grid_size + 2 * spline_order + 1,
            dtype=torch.float32
        )

        # 使用Kaiming均匀分布初始化卷积层权重
        for conv_layer in self.base_conv:
            nn.init.kaiming_uniform_(conv_layer.weight, nonlinearity='linear')

        for conv_layer in self.spline_conv:
            nn.init.kaiming_uniform_(conv_layer.weight, nonlinearity='linear')

    def forward_kan(self, x, group_index):
        # 对输入应用基础激活函数,并进行线性变换
        base_output = self.base_conv[group_index](self.base_activation(x))

        x_uns = x.unsqueeze(-1)  # 扩展维度以进行样条操作
        target = x.shape[1:] + self.grid.shape  # 计算目标形状
        grid = self.grid.view(*list([1 for _ in range(self.ndim + 1)] + [-1, ])).expand(target).contiguous().to(x.device)

        # 计算样条基
        bases = ((x_uns >= grid[..., :-1]) & (x_uns < grid[..., 1:])).to(x.dtype)

        # 计算多个阶数的样条基
        for k in range(1, self.spline_order + 1):
            left_intervals = grid[..., :-(k + 1)]
            right_intervals = grid[..., k:-1]
            delta = torch.where(right_intervals == left_intervals, torch.ones_like(right_intervals),
                                right_intervals - left_intervals)
            bases = ((x_uns - left_intervals) / delta * bases[..., :-1]) + \
                    ((grid[..., k + 1:] - x_uns) / (grid[..., k + 1:] - grid[..., 1:(-k)]) * bases[..., 1:])
        bases = bases.contiguous()
        bases = bases.moveaxis(-1, 2).flatten(1, 2)  # 调整基的形状以适应卷积层
        spline_output = self.spline_conv[group_index](bases)  # 通过样条卷积层

        # 进行归一化和激活
        x = self.prelus[group_index](self.layer_norm[group_index](base_output + spline_output))

        # 应用dropout
        if self.dropout is not None:
            x = self.dropout(x)

        return x

    def forward(self, x):
        # 将输入按组分割
        split_x = torch.split(x, self.inputdim // self.groups, dim=1)
        output = []
        for group_ind, _x in enumerate(split_x):
            y = self.forward_kan(_x.clone(), group_ind)  # 对每组进行前向传播
            output.append(y.clone())
        y = torch.cat(output, dim=1)  # 合并输出
        return y

代码说明:

  1. KANConvNDLayer: 这是一个自定义的卷积层,支持多维卷积(1D, 2D, 3D),并结合了样条插值的特性。
  2. 初始化方法: 在初始化中设置了卷积层、归一化层、激活函数和dropout层,并进行了必要的参数检查。
  3. forward_kan: 这是前向传播的核心逻辑,计算基础卷积和样条卷积的输出,并进行激活和归一化处理。
  4. forward: 处理输入数据,按组分割并调用forward_kan进行计算,最后合并输出。

此代码的设计使得卷积层不仅能处理传统的卷积操作,还能通过样条插值增强模型的表达能力。

这个程序文件定义了一个名为 KANConvNDLayer 的神经网络层,主要用于实现一种新的卷积操作,支持多维输入(如1D、2D、3D)。它使用了基于样条(spline)的卷积方法,并结合了常规卷积和归一化层。以下是对代码的详细说明。

首先,导入了必要的 PyTorch 库,包括 torchtorch.nn。接着,定义了 KANConvNDLayer 类,继承自 nn.Module,这是所有神经网络模块的基类。

__init__ 方法中,初始化了多个参数,包括输入和输出维度、样条的阶数、卷积核大小、分组数、填充、步幅、扩张、维度数、网格大小、激活函数、网格范围和 dropout 比例。该方法首先调用父类的构造函数,然后根据输入参数设置类的属性。

接下来,程序对 dropout 进行了设置,如果 dropout 的值大于0,则根据维度数选择相应的 dropout 类型(1D、2D 或 3D)。同时,程序对分组数进行了检查,确保其为正整数,并且输入和输出维度能够被分组数整除。

接着,程序创建了基础卷积层和样条卷积层的模块列表,使用 conv_classnorm_class 作为卷积和归一化的具体实现。基础卷积层用于对输入进行常规卷积操作,而样条卷积层则用于处理样条基函数。

然后,程序生成了一个网格,用于样条计算。这个网格的范围由 grid_rangegrid_size 决定,样条的阶数影响网格的生成。

forward_kan 方法中,首先对输入应用基础激活函数,然后进行基础卷积操作。接着,程序通过扩展输入的维度,为样条操作做准备。计算样条基函数时,程序使用了输入值和网格之间的关系,构建了样条基函数的值。然后,样条卷积层对这些基函数进行卷积操作,最后将基础卷积输出和样条卷积输出相加,并通过归一化和激活函数处理。

forward 方法中,输入被分割成多个组,分别传入 forward_kan 方法进行处理,最后将所有组的输出拼接在一起,形成最终的输出。

此外,文件中还定义了三个子类:KANConv3DLayerKANConv2DLayerKANConv1DLayer,分别对应三维、二维和一维卷积层。这些子类通过调用父类的构造函数,传入相应的卷积和归一化类,简化了多维卷积层的实现。

整体而言,这个程序文件实现了一种灵活的卷积层,可以根据输入的维度和其他参数进行配置,适用于多种深度学习任务。

11.完整训练+Web前端界面+200+种全套创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)

19.png

参考原始博客1: https://gitee.com/Vision-Studios/Onion-Segmentation207

参考原始博客2: https://github.com/Qunmasj-Vision-Studio/Onion-Segmentation207

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值