第一章 深入浅出商业数据分析入门
1.数据分析概述
业务数据分析(描述性分析,数据透视,可视化图表)SQL,Excel等
数据挖掘分析(协同过滤,分类分析,关联分析,聚类分析等)Python,SPSS,SAS,R等
大数据分析(Hadoop大数据平台,数据整理,建模、分析与展示)Hadoop,Spark等
业务数据分析流程: 1.业务理解。数据分析的起点,最为重要的环节
2.数据收集。多渠道获取数据
3.数据处理。数据清洗,数据整理
4.数据分析。搭建多维数据分析环境,描述性分析
5.数据展现。数据可视化展现
6.成果报告。数据分析报告 商业智能(BI)分析报表
2.Excel与数据分析
3.Excel Power BI概述
(1)Power Query概述
Power Query是Power BI系列插件中的一款重要插件,用以弥补传统Excel功能在数据处理方面的不足。1. 提取整合多数据源数据(如各种关系型 数据库、Excel文件、txt格式及csv格式 等文本文件、Web页面、Hadoop的HDFS等 等) 2. 突破Excel表格的数据限制(可快速处理 几百万甚至上千万行的数据) 3. 提供丰富的数据处理分析功能 4. 可通过M函数灵活创建自定义数据处理及计算规则 5. 创建好的数据处理流程可以无限次利用
(2)Power Pivot概述
Power Pivot是一个加强版的数据透视工具,不仅在数据处理量上,在透视规则及自定义规则上也得到了大幅改善。Power Pivot特点: 1. 搭建多维数据分析环境 2. 突破数据行数限制 3. 简洁的操作界面功能 4. 强大的自定义功能
(3)Power View概述
仪表盘工具,独立界面。帮助我们快速简单地制作仪表盘,功能上类似于Excel中的数据透视图表与切片器的组合工具,可以对数据进行快速筛选查看,还可以用它制作出功能丰富的动态图表。
(4)Power Map概述
地图工具,独立界面。是微软在高版本Excel中推 出的一个功能强大的加载项,结合Bing 地图,支持用户绘制可视化的地理和时态数据,并用3D方式进行分析。因为需要与Bing地图进行通信所以需要在联网环境下使用Power Map。
4.SQL数据库概述
5.体验:Excel+SQL创建零售业销售情况分析仪
(1)MySQL数据导入整合:创建数据库、创建数据表、导数,合并多表信息创建完整信息表。
(2)Power Query数据加工处理:导入数据库数据并增加计算字段。
(3)Power Pivot搭建多维数据集:创建层次结构及汇总规则。
(4)Power View与Excel表格界面:
第二章 分析师的必备武器库-EXCEL
1.Excel基本数据类型
基本数据类型:文本型:A、数据;整数型:10、1、-9;小数型:1.01、1.9;布尔型:TRUE、FALSE;日期型:长日期、短日期;其他类型:会计、特殊
变量类型:名义型:彼此间没有顺序关系,只表示分类的数据,如性别、血型;有序型:有顺序关系的数据,如形容成绩好坏的优良中差;连续型:有顺序,包含若干小数位且取值密集的数据,如身高、体重、温度等
如何区分数值和文本:
或者看
自定义单元格格式:
常用自定义通配符:
2.Excel基本操作
数据录入;复制粘贴;
单元格操作:①在空单元格内快速填充相同的内容,比如0:选中单元格区域,开始~编辑~查找和选择~定位条件,选中~空值,确认。输入0,ctrl+回车。②隔行插入空白行:使用辅助列,对辅助列进行重新排序,达到插入空白行的目的。
查找替换筛选:使用通配符 * 代表任意多个字符,使用通配符 ? 代表一个字符。
表格转表:套用表格格式。
3.Excel公式功能
4.Excel条件格式
以单元格值为基础设置条件格式;
以公式返回值为基础设置条件格式:
图标集:用图标的不同状态来标注当前单元格值与阈值间的对比关系。百分比值=(当前单元格值-最小值)/(最大值-最小值);百分点值=PERCENTILE($L$4:$L$8,33%);
数据条,色阶;
迷你图:迷你图是放入单个单元格中的小型图,代表所选内容中的一行数据。
5.Excel数据透视功能
数据透视表,数据透视图,切片器
6.Excel基本图表功能
第三章 探索商业规律前奏-数据加工处理
1.导入多源数据方法
当只需要在Power Query中进行数据处理,而不需要在Excel表格界面中对导入的数据进行预览或单元格计算时,使用仅创建连接的导入方式,可以节省文件的容量,减少计算的压力。
当需要在Excel表格界面中使用数据时,使用表的导入方式。