大一上学期学习离散数学(屈婉玲版,其他版本可能名词和定义上有些差别),想写个学习笔记,记录一下所学,希望以后忘了还能再想起来。(如果有错误,欢迎小伙伴指正哦🥳)
第九章 代数系统
运算满足①结果唯一②封闭性 才能是二元运算哦😝
这里要注意运算表的画法哦🌸左上角是运算符,最左边一列写左运算数,最上面一行写右运算数。
而算律有以下几个:交换、结合、幂等、吸收、消去、分配。
- 是否满足交换律,看运算表结果是否关于对角线对称。
- 是否满足幂等律,看对角线上是否是自己。
- 结合律是两个相同的运算符,而分配律是两个不同的运算符。
- 交换律是吸收律的前提。
插播两个相关矩阵😀
- 转置矩阵:行列互换
- 矩阵乘法:有结合律,无交换律
重点来喽!!!💐💐💐
- 单位元(幺元)任何数与单位元运算都等于任何数。
- 零元 任何数与零元运算都等于零元。
- 逆元 x与y运算等于单位元,则x和y互为逆元。(逆元是唯一的,有单位元才有逆元)
↑↑↑高频考点哦🌷🌷🌷
(爱考!给个运算表,求三元)
同态与同构💖
V1=<A,º >,V2=<B,*>
f(xºy)=f(x)*f(y)
满足这个式子则是同态
双射的同态是同构
补充两个运算符
- 模n加法⊕: x ⊕ y = (x+y) mod n
- 模n乘法⊗: x ⊗ y = (x×y) mod n
第十章 群与环
先来个串儿😎
运算-(封闭性)→二元运算-(结合律)→半群-(单位元)→含幺半群-(逆元)→群
再来个题😎
问:Z={0,1,2,3,4,5,7,6},模8加法构成的群中,群的阶=?元素5的阶为?
分析:群的阶问的是群中的元素个数,则第一问为8。元素的阶问的是该元素经过几次运算等于单位元(这一题中单位元是0),则元素5经过8次模8加法的运算等于单位元0,所以第二个空的答案为8。//(在做题过程中我发现了个小规律,在模n加这种题中,元素加几次等于n的整数倍,则元素就是几阶的,比如元素5,5+5+5…共8个5相加才是8的倍数,所以元素5的阶就是8,同理元素4的阶就是2)
🆗,这章结束😎
第十一章 格与布尔代数
格(一种特殊的偏序集合)
- 交换律、结合律、幂等律、吸收律
- 自反、反对称、传递(偏序关系)
- 任意两个元素都有最小上界和最大下界(一定是能判断出最小上界和最大下界的,如果给出的是字母,无法判断谁是最大最小的则不是格,举个栗子↓😝)
分配格(满足分配率)
不含钻石格和五角格
只要在图中能找着这两种格,就不能叫分配格哦🌸
第三部分结束喽🥰