【离散数学】要点(屈婉玲版)第三部分 代数结构

本文概述了大学一年级离散数学课程中关于代数系统、运算性质(如交换律、结合律等)、群与环的概念,以及同态和同构的概念。特别强调了单位元、逆元和模运算在这些结构中的作用,以及格和布尔代数的定义和特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        大一上学期学习离散数学(屈婉玲版,其他版本可能名词和定义上有些差别),想写个学习笔记,记录一下所学,希望以后忘了还能再想起来。(如果有错误,欢迎小伙伴指正哦🥳)

第九章 代数系统

运算满足①结果唯一②封闭性 才能是二元运算哦😝

这里要注意运算表的画法哦🌸左上角是运算符,最左边一列写左运算数,最上面一行写右运算数。

算律有以下几个:交换、结合、幂等、吸收、消去、分配。

  • 是否满足交换律,看运算表结果是否关于对角线对称。
  • 是否满足幂等律,看对角线上是否是自己。
  • 结合律是两个相同的运算符,而分配律是两个不同的运算符。
  • 交换律是吸收律的前提。

插播两个相关矩阵😀

  • 转置矩阵:行列互换
  • 矩阵乘法:有结合律,无交换律

重点来喽!!!💐💐💐

  1. 单位元(幺元)任何数与单位元运算都等于任何数。
  2. 零元  任何数与零元运算都等于零元。
  3. 逆元  x与y运算等于单位元,则x和y互为逆元。(逆元是唯一的,有单位元才有逆元)

↑↑↑高频考点哦🌷🌷🌷

(爱考!给个运算表,求三元)


同态与同构💖

V1=<A,º >,V2=<B,*>

f(xºy)=f(x)*f(y)

满足这个式子则是同态

双射的同态是同构

补充两个运算符

  1. 模n加法⊕:  x ⊕ y = (x+y) mod n
  2. 模n乘法⊗:   x ⊗ y = (x×y) mod n

第十章 群与环

先来个串儿😎

运算-(封闭性)→二元运算-(结合律)→半群-(单位元)→含幺半群-(逆元)→群

再来个题😎

问:Z={0,1,2,3,4,5,7,6},模8加法构成的群中,群的阶=?元素5的阶为?

分析:群的阶问的是群中的元素个数,则第一问为8。元素的阶问的是该元素经过几次运算等于单位元(这一题中单位元是0),则元素5经过8次模8加法的运算等于单位元0,所以第二个空的答案为8。//(在做题过程中我发现了个小规律,在模n加这种题中,元素加几次等于n的整数倍,则元素就是几阶的,比如元素5,5+5+5…共8个5相加才是8的倍数,所以元素5的阶就是8,同理元素4的阶就是2)

🆗,这章结束😎

第十一章 格与布尔代数

(一种特殊的偏序集合)

  1. 交换律、结合律、幂等律、吸收律
  2. 自反、反对称、传递(偏序关系)
  3. 任意两个元素都有最小上界和最大下界(一定是能判断出最小上界和最大下界的,如果给出的是字母,无法判断谁是最大最小的则不是格,举个栗子↓😝)

27bea5bcf6e54fee864f5116fdf58a30.jpg

 分配格(满足分配率)

不含钻石格和五角格90b469ec28c84d1eb571c4eddb4e2878.jpg

 只要在图中能找着这两种格,就不能叫分配格哦🌸

第三部分结束喽🥰

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值